Label-free blood cell separation for space health monitoring using a portable blast cell biochip

label-free-blood-cell-separation-for-space-health-monitoring-using-a-portable-blast-cell-biochip
Label-free blood cell separation for space health monitoring using a portable blast cell biochip

References

  1. Bhagat, A. A. S. et al. Microfluidics for cell separation. Med. Biol. Eng. Comput. 48, 999–1014 (2010).

    Google Scholar 

  2. Natu, R., Guha, S., Dibaji, S. A. R. & Herbertson, L. Assessment of flow through microchannels for inertia-based sorting: Steps toward microfluidic medical devices. Micromachines 11, 886 (2020).

    Google Scholar 

  3. Warkiani, M. E. et al. Malaria detection using inertial microfluidics. Lab Chip 15, 1101–1109 (2015).

    Google Scholar 

  4. Ding, T. et al. Image-activated cell sorting. Nat. Rev. Bioeng. 3, 890–907 (2025).

    Google Scholar 

  5. Muirhead, K. A., Horan, P. K. & Poste, G. Flow cytometry: present and future. Biotechnology 3, 337–356 (1985).

    Google Scholar 

  6. Zhang, T. et al. Passive microfluidic devices for cell separation. Biotechnol. Adv. 71, 108317 (2024).

    Google Scholar 

  7. Nasiri, R. et al. Microfluidic-based approaches in targeted cell/particle separation based on physical properties: fundamentals and applications. Small 16, 2000171 (2020).

    Google Scholar 

  8. Xu, X. et al. Recent progress of inertial microfluidic-based cell separation. Analyst 146, 7070–7086 (2021).

    Google Scholar 

  9. Mansor, M. et al. Microfluidic Device for Both Active and Passive Cell Separation Techniques: A Review. Sens. Actuator. Rep. 9, 100277 (2024).

  10. Krakos, A. Lab-on-chip technologies for space research—Current trends and prospects. Microchim. Acta 191, 31 (2024).

    Google Scholar 

  11. Buttkewitz, M. A., Heuer, C. & Bahnemann, J. Sensor integration into microfluidic systems: trends and challenges. Curr. Opin. Biotechnol. 83, 102978 (2023).

    Google Scholar 

  12. Zhao, Y. et al. Microfluidic actuated and controlled systems and application for lab-on-chip in space life science. Space Sci. Technol. 3, 0008 (2023).

    Google Scholar 

  13. Low, L. A. & Giulianotti, M. A. Tissue chips in space: Modeling human diseases in microgravity. Pharm. Res. 37, 8 (2020).

    Google Scholar 

  14. Cucinotta, F. A. & Durante, M. Cancer risk from exposure to galactic cosmic rays: implications for space exploration by human beings. Lancet Oncol 7, 431–435 (2006).

    Google Scholar 

  15. Cucinotta, F. A. Space radiation risks for astronauts on multiple International Space Station missions. PLoS one 9, e96099 (2014).

    Google Scholar 

  16. Hu, S., Barzilla, J. E. & Semones, E. Acute radiation risk assessment and mitigation strategies in near future exploration spaceflights. Life Sci. Space Res. 24, 25–33 (2020).

    Google Scholar 

  17. Brenner, D. J. et al. Cancer risks attributable to low doses of ionizing radiation: Assessing what we really know. P. Natl. Acad. Sci. USA. 100, 13761–13766 (2003).

  18. Strigari, L., Strolin, S., Morganti, A. G. & Bartoloni, A. Dose-effects models for space radiobiology: an overview on dose-effect relationships. Front. Public Health 9, 733337 (2021).

    Google Scholar 

  19. Shah, D. J., Sachs, R. K. & Wilson, D. J. Radiation-induced cancer: a modern view. Br. J. Radiol. 85, e1166–e1173 (2012).

    Google Scholar 

  20. Muhsen, I. N., Zubair, A. C., Niederwieser, T. & Hashmi, S. K. Space exploration and cancer: the risks of deeper space adventures. Leukemia 38, 1872–1875 (2024).

    Google Scholar 

  21. Guo, Z., Zhou, G. M. & Hu, W. T. Carcinogenesis induced by space radiation: A systematic review. Neoplasia 32, 100828 (2022).

    Google Scholar 

  22. Kwok, M., Agathanggelou, A. & Stankovic, T. DNA damage response defects in hematologic malignancies: mechanistic insights and therapeutic strategies. Blood 143, 2123–2144 (2024).

    Google Scholar 

  23. Nishibuchi, I. & Tashiro, S. DNA double-strand break repair capacity and normal tissue toxicity induced by radiotherapy. J. Radiat. Res. 65, i52–i56 (2024).

    Google Scholar 

  24. Welsh, J. S., Karam, P. A. & Gale, R. P. Radiation exposure and space exploration. Leukemia 38, 1870–1871 (2024).

    Google Scholar 

  25. Jacob, P. et al. Next generation of astronauts or ESA astronaut 2.0 concept and spotlight on immunity. npj Microgravity 9, 51 (2023).

    Google Scholar 

  26. Fenaux, P. Myelodysplastic syndromes: state of the art pathology, diagnosis and management. Best Pract. Res. Clin. Haematol. 26, 307–308 (2013).

    Google Scholar 

  27. Leuraud, K. Ionising radiation and risk of death from leukaemia and lymphoma in radiation-monitored workers (INWORKS): an international cohort study. Lancet Haematol 2, e276–e281 (2015).

    Google Scholar 

  28. Gilbert, E. S. Ionising radiation and cancer risks: What have we learned from epidemiology?. Int. J. Radiat. Biol. 85, 467–482 (2009).

    Google Scholar 

  29. Preston, D. L. Cancer incidence in atomic bomb survivors. Part III: Leukemia, lymphoma and multiple myeloma, 1950-1987. Radiat. Res. 137, S68–S97 (1994).

    Google Scholar 

  30. Folley, J. H., Borges, W. & Yamawaki, T. Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan. Am J Med 13, 311–321 (1952).

    Google Scholar 

  31. Committee for Evaluation of Space Radiation Cancer Risk Model, and National Research Council. Technical Evaluation of the NASA Model for Cancer Risk to Astronauts Due to Space Radiation. Washington, DC: National Academies Press, (2012).

  32. Ghani, F. & Zubair, A. C. Possible impacts of cosmic radiation on leukemia development during human deep space exploration. Leukemia 39, 1–11 (2025).

  33. Durante, M. & Cucinotta, F. A. Physical basis of radiation protection in space travel. Rev Mod Phys 83, 1245–1281 (2011).

    Google Scholar 

  34. Warkiani, M. E. et al. Ultra-fast, label-free isolation of circulating tumor cells from blood using spiral microfluidics. Nat. Protoc. 11, 134–148 (2016).

    Google Scholar 

  35. Macaraniag, C. et al. Benchmarking microfluidic and immunomagnetic platforms for isolating circulating tumor cells in pancreatic cancer. Lab Chip 25, 5292–5301 (2025).

    Google Scholar 

  36. Sun, J. et al. Double spiral microchannel for label-free tumor cell separation and enrichment. Lab Chip 12, 3952–3960 (2012).

    Google Scholar 

  37. Park, E. S. et al. Continuous flow deformability-based separation of circulating tumor cells using microfluidic ratchets. Small 12, 1909–1919 (2016).

    Google Scholar 

  38. Varotto, E., Munaretto, E., Stefanachi, F., Della Torre, F. & Buldini, B. Diagnostic challenges in acute monoblastic/monocytic leukemia in children. Front. Pediatr. 10, 911093 (2022).

    Google Scholar 

  39. Saffman, P. G. T. The lift on a small sphere in a slow shear flow. J. Fluid Mech. 22, 385–400 (1965).

    Google Scholar 

  40. Sun, L. et al. Recent advances in microfluidic technologies for separation of biological cells. Biomed. Microdevices 22, 55 (2020).

    Google Scholar 

  41. Khoo, B. L. et al. Liquid biopsy for minimal residual disease detection in leukemia using a portable blast cell biochip. NPJ Precis. Oncology 3, 30 (2019).

    Google Scholar 

  42. Belmonte, A. et al. Motion control in free-standing shape-memory actuators. Smart Mater. Struc. 27, 075013 (2018).

    Google Scholar 

  43. Sekhwama, M. et al. Integration of microfluidic chips with biosensors. Discov Appl Sci 6, 458 (2024).

    Google Scholar 

  44. Fragoso, A. et al. Integrated microfluidic platform for the electrochemical detection of breast cancer markers in patient serum samples. Lab Chip 11, 625–631 (2011).

    Google Scholar 

  45. An, L. et al. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array. Lab Chip 18, 335–342 (2018).

    Google Scholar 

  46. Kuntaegowdanahalli, S. S., Bhagat, A. A. S., Kumar, G. & Papautsky, I. Inertial microfluidics for continuous particle separation in spiral microchannels. Lab Chip 9, 2973–2980 (2009).

    Google Scholar 

  47. D’Auria, M. et al. Effect of Silybum marianum-derived nanocellulose as a sustainable functional filler on supramolecular structure of thermoplastic zein. Int. J. Biol. Macromol. 311, 143904 (2025).

Download references