References
-
Geyer, R., Jambeck, J. R. & Law, K. L. Production, use, and fate of all plastics ever made. Sci. Adv. 3, e1700782. https://doi.org/10.1126/sciadv.1700782 (2017).
-
Shruti, V. C., Perez-Guevara, F., Elizalde-Martinez, I. & Kutralam-Muniasamy, G. Toward a unified framework for investigating micro(nano)plastics in packaged beverages intended for human consumption. Environ. Pollut. 268, 115811. https://doi.org/10.1016/j.envpol.2020.115811 (2021).
-
Chain, E. P. o. C. i. t. F. Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA J. 14, e04501. https://doi.org/10.2903/j.efsa.2016.4501 (2016).
-
Smith, M., Love, D. C., Rochman, C. M. & Neff, R. A. Microplastics in seafood and the implications for human health. Curr. Environ. Health Rep. 5, 375–386. https://doi.org/10.1007/s40572-018-0206-z (2018).
-
Cox, K. D. et al. Human consumption of microplastics. Environ. Sci. Technol. 53, 7068–7074. https://doi.org/10.1021/acs.est.9b01517 (2019).
-
Schymanski, D., Goldbeck, C., Humpf, H. U. & Furst, P. Analysis of microplastics in water by micro-Raman spectroscopy: release of plastic particles from different packaging into mineral water. Water Res. 129, 154–162. https://doi.org/10.1016/j.watres.2017.11.011 (2018).
-
Senathirajah, K. et al. Estimation of the mass of microplastics ingested – A pivotal first step towards human health risk assessment. J. Hazard. Mater. 404, 124004. https://doi.org/10.1016/j.jhazmat.2020.124004 (2021).
-
Huang, S. et al. Detection and analysis of microplastics in human sputum. Environ. Sci. Technol. 56, 2476–2486. https://doi.org/10.1021/acs.est.1c03859 (2022).
-
Abbasi, S. & Turner, A. Human exposure to microplastics: A study in Iran. J. Hazard. Mater. 403, 123799. https://doi.org/10.1016/j.jhazmat.2020.123799 (2021).
-
Schwabl, P. et al. Detection of various microplastics in human stool: A prospective case series. Ann. Intern. Med. 171, 453–457. https://doi.org/10.7326/M19-0618 (2019).
-
Khan, A. & Jia, Z. Recent insights into uptake, toxicity, and molecular targets of microplastics and nanoplastics relevant to human health impacts. iScience 26, 106061. https://doi.org/10.1016/j.isci.2023.106061 (2023).
-
dos Santos, T., Varela, J., Lynch, I., Salvati, A. & Dawson, K. A. Effects of transport inhibitors on the cellular uptake of carboxylated polystyrene nanoparticles in different cell lines. PLoS One. 6, e24438. https://doi.org/10.1371/journal.pone.0024438 (2011).
-
Domenech, J. et al. Long-term effects of polystyrene nanoplastics in human intestinal Caco-2 cells. Biomolecules 11 https://doi.org/10.3390/biom11101442 (2021).
-
Bannunah, A., Cavanagh, R., Shubber, S., Vllasaliu, D. & Stolnik, S. Difference in endocytosis pathways used by differentiated versus nondifferentiated epithelial Caco-2 cells to internalize nanosized particles. Mol. Pharm. 21, 3603–3612. https://doi.org/10.1021/acs.molpharmaceut.4c00333 (2024).
-
Xu, D., Ma, Y., Han, X. & Chen, Y. Systematic toxicity evaluation of polystyrene nanoplastics on mice and molecular mechanism investigation about their internalization into Caco-2 cells. J. Hazard. Mater. 417, 126092. https://doi.org/10.1016/j.jhazmat.2021.126092 (2021).
-
Wang, F. et al. Time resolved study of cell death mechanisms induced by amine-modified polystyrene nanoparticles. Nanoscale 5, 10868–10876. https://doi.org/10.1039/c3nr03249c (2013).
-
Han, S. W., Choi, J. & Ryu, K. Y. Stress response of mouse embryonic fibroblasts exposed to polystyrene nanoplastics. Int. J. Mol. Sci. 22 https://doi.org/10.3390/ijms22042094 (2021).
-
Martinez, B., Rodriguez, A., Kulakauskas, S. & Chapot-Chartier, M. P. Cell wall homeostasis in lactic acid bacteria: threats and defences. FEMS Microbiol. Rev. 44, 538–564. https://doi.org/10.1093/femsre/fuaa021 (2020).
-
Araujo, M. M. & Botelho, P. B. Probiotics, prebiotics, and synbiotics in chronic constipation: outstanding aspects to be considered for the current evidence. Front. Nutr. 9, 935830. https://doi.org/10.3389/fnut.2022.935830 (2022).
-
Madsen, K. L., Doyle, J. S., Jewell, L. D., Tavernini, M. M. & Fedorak, R. N. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 116, 1107–1114. https://doi.org/10.1016/s0016-5085(99)70013-2 (1999).
-
Usui, Y. et al. Effects of long-term intake of a yogurt fermented with Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 on mice. Int. Immunol. 30, 319–331. https://doi.org/10.1093/intimm/dxy035 (2018).
-
Kobayashi, K., Honme, Y. & Sashihara, T. Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 induce the expression of the REG3 family in the small intestine of mice via the stimulation of dendritic cells and type 3 innate lymphoid cells. Nutrients 11 https://doi.org/10.3390/nu11122998 (2019).
-
Kobayashi, K., Mochizuki, J., Yamazaki, F. & Sashihara, T. Yogurt starter strains ameliorate intestinal barrier dysfunction via activating AMPK in Caco-2 cells. Tissue Barriers 2184157 https://doi.org/10.1080/21688370.2023.2184157 (2023).
-
Kobayashi, K. et al. Lactobacillus delbrueckii subsp. bulgaricus 2038 and Streptococcus thermophilus 1131 ameliorate barrier dysfunction in human induced pluripotent stem cell-derived crypt-villus structural small intestine. Front. Immunol. 16 (1585007). https://doi.org/10.3389/fimmu.2025.1585007 (2025).
-
Wang, Y. et al. Intestinal nanoparticle delivery and cellular response: a review of the bidirectional nanoparticle-cell interplay in mucosa based on physiochemical properties. J. Nanobiotechnol. 22, 669. https://doi.org/10.1186/s12951-024-02930-6 (2024).
-
Mahler, G. J. et al. Oral exposure to polystyrene nanoparticles affects iron absorption. Nat. Nanotechnol. 7, 264–271. https://doi.org/10.1038/nnano.2012.3 (2012).
-
Choi, H. et al. Size-dependent internalization of microplastics and nanoplastics using in vitro model of the human intestine-contribution of each cell in the tri-culture models. Nanomaterials (Basel) 14. https://doi.org/10.3390/nano14171435 (2024).
-
Wu, L. L. et al. Commensal bacterial endocytosis in epithelial cells is dependent on myosin light chain kinase-activated brush border fanning by interferon-gamma. Am. J. Pathol. 184, 2260–2274. https://doi.org/10.1016/j.ajpath.2014.05.003 (2014).
-
Wang, Y., Liu, Y., Zhou, W., Lin, J. & Wen, L. Myosin light-chain kinase inhibitors attenuate nanoparticles-induced autophagy and cytotoxicity by suppression endocytosis. J. Nanosci. Nanotechnol. 19, 3792–3797. https://doi.org/10.1166/jnn.2019.16324 (2019).
-
Haque, M. et al. Lactobacillus acidophilus inhibits the TNF-α-induced increase in intestinal epithelial tight junction permeability via a TLR-2 and PI3K-dependent inhibition of NF-κB activation. Front. Immunol. 15, 1348010. https://doi.org/10.3389/fimmu.2024.1348010 (2024).
-
Schwandner, R., Dziarski, R., Wesche, H., Rothe, M. & Kirschning, C. J. Peptidoglycan- and lipoteichoic acid-induced cell activation is mediated by toll-like receptor 2. J. Biol. Chem. 274, 17406–17409. https://doi.org/10.1074/jbc.274.25.17406 (1999).
-
Yoshimura, A. et al. Cutting edge: recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J. Immunol. 163, 1–5. https://doi.org/10.4049/jimmunol.163.1.1 (1999).
-
Yang, G. et al. Glucuronidation: driving factors and their impact on glucuronide disposition. Drug Metab. Rev. 49, 105–138. https://doi.org/10.1080/03602532.2017.1293682 (2017).
-
Spencer, J. P. et al. The small intestine can both absorb and glucuronidate luminal flavonoids. FEBS Lett. 458, 224–230. https://doi.org/10.1016/s0014-5793(99)01160-6 (1999).
-
Tian, C., Hao, L., Yi, W., Ding, S. & Xu, F. Polyphenols, oxidative stress, and metabolic syndrome. Oxid. Med. Cell. Longev. 2020 (7398453). https://doi.org/10.1155/2020/7398453 (2020).
-
Yahfoufi, N., Alsadi, N., Jambi, M. & Matar, C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 10 https://doi.org/10.3390/nu10111618 (2018).
-
Mizuma, T., Momota, R., Haga, M. & Hayashi, M. Factors affecting glucuronidation activity in Caco-2 cells. Drug Metab. Pharmacokinet. 19, 130–134. https://doi.org/10.2133/dmpk.19.130 (2004).
-
Chen, J. et al. Surface functionalization-dependent inflammatory potential of polystyrene nanoplastics through the activation of MAPK/ NF-κB signaling pathways in macrophage Raw 264.7. Ecotoxicol. Environ. Saf. 251, 114520. https://doi.org/10.1016/j.ecoenv.2023.114520 (2023).
-
Leslie, H. A. et al. Discovery and quantification of plastic particle pollution in human blood. Environ. Int. 163, 107199. https://doi.org/10.1016/j.envint.2022.107199 (2022).
-
Marfella, R. et al. Microplastics and nanoplastics in atheromas and cardiovascular events. N Engl. J. Med. 390, 900–910. https://doi.org/10.1056/NEJMoa2309822 (2024).
-
Vollmer, W., Blanot, D. & de Pedro, M. A. Peptidoglycan structure and architecture. FEMS Microbiol. Rev. 32, 149–167. https://doi.org/10.1111/j.1574-6976.2007.00094.x (2008).
-
Shiraishi, T., Yokota, S., Fukiya, S. & Yokota, A. Structural diversity and biological significance of lipoteichoic acid in Gram-positive bacteria: focusing on beneficial probiotic lactic acid bacteria. Biosci. Microbiota Food Health. 35, 147–161. https://doi.org/10.12938/bmfh.2016-006 (2016).
-
Walczak, A. P. et al. Translocation of differently sized and charged polystyrene nanoparticles in in vitro intestinal cell models of increasing complexity. Nanotoxicology 9, 453–461. https://doi.org/10.3109/17435390.2014.944599 (2015).
-
Stock, V. et al. Uptake and cellular effects of PE, PP, PET and PVC microplastic particles. Toxicol. Vitro. 70, 105021. https://doi.org/10.1016/j.tiv.2020.105021 (2021).
-
Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U S A. 102, 15545–15550. https://doi.org/10.1073/pnas.0506580102 (2005).
-
Mootha, V. K. et al. PGC-1α-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat. Genet. 34, 267–273. https://doi.org/10.1038/ng1180 (2003).
