Lactobacillus-vectored nanobodies improve broiler productivity under sub-clinical necrotic enteritis with associated microbiome and transcriptome changes

lactobacillus-vectored-nanobodies-improve-broiler-productivity-under-sub-clinical-necrotic-enteritis-with-associated-microbiome-and-transcriptome-changes
Lactobacillus-vectored nanobodies improve broiler productivity under sub-clinical necrotic enteritis with associated microbiome and transcriptome changes

References

  1. Singer, R. S. et al. Raising animals without antibiotics: U.S. producer and veterinarian experiences and opinions. Front. Vet. Sci. 6, 452 (2019).

    Google Scholar 

  2. Zhou, Y., Zhang, A., van Klinken, R. D., Jones, D. & Wang, J. Consumers’ perspectives on antibiotic use and antibiotic resistance in food animals: a systematic review. NPJ Sci. Food 9, 29 (2025).

    Google Scholar 

  3. Lansing, D. Assessing life and assembling economies in the production of antibiotic-free broilers. Environ. Plan. A Econ. Space 57, 495–512 (2025).

    Google Scholar 

  4. Karavolias, J., Salois, M. J., Baker, K. T. & Watkins, K. Raised without antibiotics: impact on animal welfare and implications for food policy. Transl. Anim. Sci. 2, 337–348 (2018).

    Google Scholar 

  5. Plata, G. et al. Growth promotion and antibiotic induced metabolic shifts in the chicken gut microbiome. Commun. Biol. 5, 293 (2022).

    Google Scholar 

  6. Fathima, S., Hakeem, W. G. A., Shanmugasundaram, R. & Selvaraj, R. K. Necrotic enteritis in broiler chickens: a review on the pathogen, pathogenesis, and prevention. Microorganisms https://doi.org/10.3390/microorganisms10101958 (2022).

  7. Abd El-Hack, M. E. et al. Necrotic enteritis in broiler chickens: disease characteristics and prevention using organic antibiotic alternatives – a comprehensive review. Poult. Sci. 101, 101590 (2022).

    Google Scholar 

  8. Williams, R. B. Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol. 34, 159–180 (2005).

    Google Scholar 

  9. Timbermont, L., Haesebrouck, F., Ducatelle, R. & Van Immerseel, F. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol. 40, 341–347 (2011).

    Google Scholar 

  10. Dahiya, J. P., Wilkie, D. C., Van Kessel, A. G. & Drew, M. D. Potential strategies for controlling necrotic enteritis in broiler chickens in post-antibiotic era. Anim. Feed Sci. Technol. 129, 60–88 (2006).

    Google Scholar 

  11. Emami, N. K. & Dalloul, R. A. Centennial Review: Recent developments in host-pathogen interactions during necrotic enteritis in poultry. Poult. Sci. 100, 101330 (2021).

    Google Scholar 

  12. Gangaiah, D. et al. Recombinant Limosilactobacillus (Lactobacillus) delivering nanobodies against Clostridium perfringens NetB and alpha toxin confers potential protection from necrotic enteritis. Microbiologyopen 11, e1270 (2022).

    Google Scholar 

  13. Sandvang, D. et al. Effects of feed supplementation with 3 different probiotic Bacillus strains and their combination on the performance of broiler chickens challenged with Clostridium perfringens. Poult. Sci. 100, 100982 (2021).

    Google Scholar 

  14. Shamshirgaran, M. A. & Golchin, M. A comprehensive review of experimental models and induction protocols for avian necrotic enteritis over the past 2 decades. Front. Vet. Sci. 11, 1429637 (2024).

    Google Scholar 

  15. Zhang, X. et al. Chicken jejunal microbiota improves growth performance by mitigating intestinal inflammation. Microbiome 10, 107 (2022).

    Google Scholar 

  16. Kang, K. I. et al. Chicken astrovirus as an aetiological agent of runting-stunting syndrome in broiler chickens. J. Gen. Virol. 99, 512–524 (2018).

    Google Scholar 

  17. Sellers, H. S. Astrovirus Infections in Poultry https://www.merckvetmanual.com/poultry/viral-enteritis-in-poultry/astrovirus-infections-in-poultry (2024).

  18. Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol 71, 8228–8235 (2005).

    Google Scholar 

  19. Greppi, A. et al. Isolation and comparative genomic analysis of reuterin-producing Lactobacillus reuteri from the chicken gastrointestinal tract. Front. Microbiol 11, 1166 (2020).

    Google Scholar 

  20. Li, F. et al. A phylogenomic analysis of Limosilactobacillus reuteri reveals ancient and stable evolutionary relationships with rodents and birds and zoonotic transmission to humans. BMC Biol. 21, 53 (2023).

    Google Scholar 

  21. Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol 2, 17121 (2017).

    Google Scholar 

  22. Subramanian, A. et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545–15550 (2005).

    Google Scholar 

  23. Veseli, I. et al. Microbes with higher metabolic independence are enriched in human gut microbiomes under stress. eLife 12, RP89862 (2025).

    Google Scholar 

  24. Scales, B. S., Dickson, R. P. & Huffnagle, G. B. A tale of two sites: how inflammation can reshape the microbiomes of the gut and lungs. J. Leukoc. Biol. 100, 943–950 (2016).

    Google Scholar 

  25. Hsieh, S. C. et al. The bacterial metabolite 2,3-butanediol ameliorates endotoxin-induced acute lung injury in rats. Microbes Infect. 9, 1402–1409 (2007).

    Google Scholar 

  26. Sang, R. et al. Taraxasterol alleviates aflatoxin B(1)-induced liver damage in broiler chickens via regulation of oxidative stress, apoptosis and autophagy. Ecotoxicol. Environ. Saf. 251, 114546 (2023).

    Google Scholar 

  27. Gadde, U., Kim, W. H., Oh, S. T. & Lillehoj, H. S. Alternatives to antibiotics for maximizing growth performance and feed efficiency in poultry: a review. Anim. Health Res. Rev. 18, 26–45 (2017).

    Google Scholar 

  28. Cheng, G. et al. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front. Microbiol. 5, 217 (2014).

    Google Scholar 

  29. Ji, J., Jin, W., Liu, S. J., Jiao, Z. & Li, X. Probiotics, prebiotics, and postbiotics in health and disease. MedComm 4, e420 (2023).

    Google Scholar 

  30. Baxter, N. T. et al. Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. mBio https://doi.org/10.1128/mBio.02566-18 (2019).

  31. Jansseune, S. C. G. et al. Diet composition influences probiotic and postbiotic effects on broiler growth and physiology. Poult. Sci. 103, 103650 (2024).

    Google Scholar 

  32. Wang, J. et al. Phytogenic feed additives as natural antibiotic alternatives in animal health and production: a review of the literature of the last decade. Anim. Nutr. 17, 244–264 (2024).

    Google Scholar 

  33. Baker, J. R. Jr., Farazuddin, M., Wong, P. T. & O’Konek, J. J. The unfulfilled potential of mucosal immunization. J. Allergy Clin. Immunol. 150, 1–11 (2022).

    Google Scholar 

  34. Russell, M. W. & Mestecky, J. Mucosal immunity: the missing link in comprehending SARS-CoV-2 infection and transmission. Front. Immunol. 13, 957107 (2022).

    Google Scholar 

  35. Hofacre, C. L. et al. Use of Aviguard and other intestinal bioproducts in experimental Clostridium perfringens-associated necrotizing enteritis in broiler chickens. Avian Dis. 42, 579–584 (1998).

    Google Scholar 

  36. Huang, B. et al. Immune stress impairs broiler performance by affecting hypothalamic methylation modification and intestinal 5-HT synthesis. Poult. Sci. 104, 105444 (2025).

    Google Scholar 

  37. Arsenault, R. J., Lee, J. T., Latham, R., Carter, B. & Kogut, M. H. Changes in immune and metabolic gut response in broilers fed beta-mannanase in beta-mannan-containing diets. Poult. Sci. 96, 4307–4316 (2017).

    Google Scholar 

  38. He, W., Goes, E. C., Wakaruk, J., Barreda, D. R. & Korver, D. R. A poultry subclinical necrotic enteritis disease model based on natural clostridium perfringens uptake. Front Physiol. 13, 788592 (2022).

    Google Scholar 

  39. Gangaiah, D. et al. Effects of Limosilactobacillus reuteri strains PTA-126787 and PTA-126788 on intestinal barrier integrity and immune homeostasis in an alcohol-induced leaky gut model. Sci. Rep. 14, 19584 (2024).

    Google Scholar 

  40. Yarru, L. P. et al. Effects of turmeric (Curcuma longa) on the expression of hepatic genes associated with biotransformation, antioxidant, and immune systems in broiler chicks fed aflatoxin. Poult. Sci. 88, 2620–2627 (2009).

    Google Scholar 

  41. Ma, Q. et al. Molecular mechanisms of lipoic acid protection against aflatoxin B(1)-induced liver oxidative damage and inflammatory responses in broilers. Toxins (Basel) 7, 5435–5447 (2015).

    Google Scholar 

  42. Mei, W., Hao, Y., Xie, H., Ni, Y. & Zhao, R. Hepatic inflammatory response to exogenous LPS challenge is exacerbated in broilers with fatty liver disease. Animals https://doi.org/10.3390/ani10030514 (2020).

  43. Kovesi, B. et al. Curcumin mitigates ochratoxin A-induced oxidative stress and alters gene expression in broiler chicken liver and kidney. Acta Vet. Hung. 72, 41–50 (2024).

    Google Scholar 

  44. Osselaere, A. et al. Deoxynivalenol impairs hepatic and intestinal gene expression of selected oxidative stress, tight junction and inflammation proteins in broiler chickens, but addition of an adsorbing agent shifts the effects to the distal parts of the small intestine. PLoS ONE 8, e69014 (2013).

    Google Scholar 

  45. ADSA, ASAS & PSA. Guide for the Care and Use of Agricultural Animals in Research and Teaching 4th edn (American Dairy Science Association, American Society of Animal Science & Poultry Science Association, 2020).

  46. Wilson, F. D. et al. Comparison of two methods for determination of intestinal villus to crypt ratios and documentation of early age-associated ratio changes in broiler chickens. Poult. Sci. 97, 1757–1761 (2018).

    Google Scholar 

  47. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).

    Google Scholar 

  48. Kinstler, S. R. et al. Subclinical necrotic enteritis impacts developmental Notch and Wnt signaling and intestinal morphology in the small intestine of broiler chickens. Avian Dis. 68, 299–313 (2024).

    Google Scholar 

  49. Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).

    Google Scholar 

  50. McGillycuddy, M., Popovic, G., Bolker, B. M. & Warton, D. I. Parsimoniously fitting large multivariate random effects in glmmTMB. J. Stat. Softw. 112, 1–19 (2025).

    Google Scholar 

  51. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  52. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    Google Scholar 

  53. Danecek, P. et al. Twelve years of SAMtools and BCFtools. Gigascience https://doi.org/10.1093/gigascience/giab008 (2021).

  54. Menzel, P., Ng, K. L. & Krogh, A. Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat. Commun. 7, 11257. https://doi.org/10.1038/ncomms11257 (2016).

    Google Scholar 

  55. Olson, R. D. et al. Introducing the Bacterial and Viral Bioinformatics Resource Center (BV-BRC): a resource combining PATRIC, IRD and ViPR. Nucleic Acids Res. 51, D678–D689 (2023).

    Google Scholar 

  56. Goldfarb, T. et al. NCBI RefSeq: reference sequence standards through 25 years of curation and annotation. Nucleic Acids Res. 53, D243–D257 (2025).

    Google Scholar 

  57. Piro, V. C., Matschkowski, M. & Renard, B. Y. MetaMeta: integrating metagenome analysis tools to improve taxonomic profiling. Microbiome 5, 101 (2017).

    Google Scholar 

  58. Aziz, R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75 (2008).

    Google Scholar 

  59. Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e1009442 (2021).

    Google Scholar 

  60. Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    Google Scholar 

  61. Kim, J., Na, S. I., Kim, D. & Chun, J. UBCG2: Up-to-date bacterial core genes and pipeline for phylogenomic analysis. J. Microbiol 59, 609–615 (2021).

    Google Scholar 

  62. Seaver, S. M. D. et al. The ModelSEED Biochemistry Database for the integration of metabolic annotations and the reconstruction, comparison and analysis of metabolic models for plants, fungi and microbes. Nucleic Acids Res. 49, D575–D588 (2021).

    Google Scholar 

  63. Korotkevich, G. et al. Fast gene set enrichment analysis. Prerpint at bioRxiv https://doi.org/10.1101/060012 (2021).

  64. Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 525–527 (2016).

    Google Scholar 

  65. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 

  66. Ma, J., Shojaie, A. & Michailidis, G. A comparative study of topology-based pathway enrichment analysis methods. BMC Bioinform. 20, 546 (2019).

    Google Scholar 

  67. Klunemann, M. et al. Multitissue transcriptomics demonstrates the systemic physiology of methionine deficiency in broiler chickens. Animal 18, 101143 (2024).

    Google Scholar 

  68. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate – a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).

    Google Scholar 

  69. Gillespie, M. et al. The reactome pathway knowledgebase 2022. Nucleic Acids Res. 50, D687–D692 (2022).

    Google Scholar 

  70. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

    Google Scholar 

Download references