References
-
Harun, R., Suhaimee, S., Zaffrie, M., Amin, M. & Sulaiman, N. H. Benchmarking and prospecting of technological practices in rice production (Penanda aras dan prospek amalan teknologi dalam pengeluaran padi). Econ. Technol. Manag. Rev. 10, 77–88 (2015).
-
Najim, M. M. M., Lee, T. S., Haque, M. A. & Esham, M. Sustainability of rice production: A Malaysian perspective. J. Agric. Sci. 3(1), 1 (2007).
-
Mohd Din, B. N., Syd Ali, N., Tan, G. H. & Yusop, M. R. Current status of bacterial leaf blight in Malaysian rice plants. J. Curr. Opin. Crop. Sci. 4(1), 1–12 (2023).
-
Sabri, S., Ab Wahab, M. Z., Sapak, Z. & Mohd Anuar, I. S. A review of bacterial diseases of rice and its management in Malaysia. Food Res. 7, 120–133 (2023).
-
Swings, J. et al. Reclassification of the causal agents of bacterial blight. Int. J. Syst. Bacteriol. 40(3), 309–311 (1990).
-
Dorairaj, D. & Govender, N. T. Rice and paddy industry in Malaysia: governance and policies, research trends, technology adoption and resilience. Front Sustain Food Syst. 7, 1–22 (2023).
-
Kumar, L. V. & Balabaskar, P. In vitro antibacterial activity of plant extracts against Xanthomonas oryzae pv. oryzae causing bacterial leaf blight in rice. Int. J. Plant Protect 6(1), 2013 (2013).
-
Doni, F., Suhaimi, N. S. M., Mohamed, Z., Ishak, N. & Mispan, M. S. Pantoea: A newly identified causative agent for leaf blight disease in rice. J. Plant Dis. Prot. 126(6), 491–494. https://doi.org/10.1007/s41348-019-00244-6 (2019).
-
Visser, R., Holzapfel, W. H., Bezuidenhout, J. J. & Kotze, J. M. Antagonism of lactic acid bacteria against phytopathogenic bacteria. Appl. Environ. Microbiol. 52(3), 552–555 (1986).
-
Emmert, E. A. B. & Handelsman, J. Biocontrol of plant disease: A (Gram-) positive perspective. FEMS Microbiol. Lett. 171(1), 1–9 (1999).
-
Goldstein, E. J. C., Tyrrell, K. L. & Citron, D. M. Lactobacillus species: Taxonomic complexity and controversial susceptibilities. Clin Infect Dis. 60(Suppl 2), S98-107 (2015).
-
Damalas, C. A. & Eleftherohorinos, I. G. Pesticide exposure, safety issues, and risk assessment indicators. Int. J. Environ. Res. Public Health. 8(5), 1402–1419 (2011).
-
Mateo, E. M., Tarazona, A., Aznar, R. & Mateo, F. Exploring the impact of lactic acid bacteria on the biocontrol of toxigenic Fusarium spp and their main mycotoxins. Int. J. Food Microbiol. 387, 110054. https://doi.org/10.1016/j.ijfoodmicro.2022.110054 (2023).
-
Ibrahim, S. A. et al. Lactic acid bacteria as antimicrobial agents: Food safety and microbial food spoilage prevention. Foods. 10(12), 1–13 (2021).
-
Lamont, J. R., Wilkins, O., Bywater-Ekegärd, M. & Smith, D. L. From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biol. Biochem. 111, 1–9 (2017).
-
Azizi, M. M. F. et al. First report of Pantoea ananatis causing leaf blight disease of rice in Peninsular Malaysia. Plant Dis. 103(8), 2122 (2019).
-
Azman, N., Sijam, K., Hata, E., Othman, R. & Saud, H. Screening of bacteria as antagonist against Xanthomonas oryzae pv. oryzae, the causal agent of bacterial leaf blight of paddy and as plant growth promoter. J. Exp. Agric. Int. 16(4), 1–15 (2017).
-
Henning, C. et al. Isolation and taxonomic identity of bacteriocin-producing lactic acid bacteria from retail foods and animal sources. Microorganisms. 3(1), 80–93 (2015).
-
Dopazo, V. et al. Potential application of lactic acid bacteria in the biopreservation of red grape from mycotoxigenic fungi. J. Sci. Food Agric. 102(3), 898–907 (2022).
-
Saravanakumari, P. & Mani, K. Structural characterization of a novel xylolipid biosurfactant from Lactococcus lactis and analysis of antibacterial activity against multi-drug resistant pathogens. Bioresour. Technol. 101(22), 8851–8854. https://doi.org/10.1016/j.biortech.2010.06.104 (2010).
-
Harris, L. J., Daeschel, M. A., Stiles, M. E. & Klaenhammer, T. R. Antimicrobial activity of lactic acid bacteria against Listeria monocytogenes. J. Food Prot. 52(6), 384–387. https://doi.org/10.4315/0362-028X-52.6.384 (1989).
-
Alshareef, F. Protocol to evaluate antibacterial activity MIC, FIC and time kill method. Acta Sci. Microbiol. 4(5), 2–6 (2021).
-
Pettitt, T. R., Wainwright, M. F., Wakeham, A. J. & White, J. G. A simple detached leaf assay provides rapid and inexpensive determination of pathogenicity of Pythium isolates to “all year round” (AYR) chrysanthemum roots. Plant Pathol. 60(5), 946–956 (2011).
-
Kaya, I., Yigit, N. & Benli, M. Antimicrobial activity of various extracts of Ocimum basilicum l. and observation of the inhibition effect on bacterial cells by use of scanning electron microscopy. African. J. Tradit. Complement Altern. Med. 5(4), 363 (2008).
-
Techaoei, S., Jarmkom, K., Dumrongphuttidecha, T. & Khobjai, W. Bioactive compound and chemical characterization of lactic acid bacteria from fermented food as bio-preservative agents to control food-borne pathogens. J. Pharm. Pharmacogn. Res. 11(6), 1044–1055 (2023).
-
Diale, M. O., Kayitesi, E. & Serepa-Dlamini, M. H. Genome in silico and in vitro analysis of the probiotic properties of a bacterial endophyte, bacillus paranthracis strain MHSD3. Front. Genet. 12, 1–19 (2021).
-
Ser, Z., Liu, X., Tang, N. N. & Locasale, J. W. Extraction parameters for metabolomics from cultured cells. Anal. Biochem. 475, 22–28. https://doi.org/10.1016/j.ab.2015.01.003 (2015).
-
Huang, Q. & Luo, P. Effects of leaf cutting on fusarium head blight disease development, photosynthesis parameters and yield of wheat under f Graminearum inoculation condition. Agriculture 11(11), 1065 (2021).
-
Horsfall, J. G., Barratt, R. W. An improved grading system for measuring plant diseases (1946)
-
Trias, R., Bañeras, L., Montesinos, E. & Badosa, E. Lactic acid bacteria from fresh fruit and vegetables as biocontrol agents of phytopathogenic bacteria and fungi. Int. Microbiol. 11(4), 231–236 (2008).
-
Emerenini, E. In vitro studies on antimicrobial activities of lactic acid bacteria isolated from fresh vegetables for biocontrol of tomato pathogens. Br. Microbiol. Res. J. 4(3), 351–359 (2014).
-
Sarkono, S., Faturrahman, F., Sofyan, Y. Isolation and identification of lactic acid bacteria from abalone (Haliotis asinina) as a potential candidate of probiotic. Nusant Biosci. 2(1) (1970).
-
Maalaoui, A., Trimeche, A., Marnet, P. G. & Demarigny, Y. Use of Lactococcus lactis Subsp. Lactis strains to inhibit the development of pathogens. Food Nutr. Sci. 11(02), 98–112 (2020).
-
Tenea, G. N., Hurtado, P. & Ortega, C. Inhibitory effect of substances produced by native lactococcus lactis strains of tropical fruits towards food pathogens. Prev. Nutr. Food Sci. 23(3), 260–268 (2018).
-
Stice, S. P. et al. Thiosulfinate tolerance is a virulence strategy of an atypical bacterial pathogen of onion. Curr. Biol. 30(16), 3130–3140. https://doi.org/10.1016/j.cub.2020.05.092 (2020).
-
McDougall, L. A., Holzapfel, W. H., Schillinger, U., Feely, D. E. & Rupnow, J. H. Scanning electron microscopy of target cells and molecular weight determination of a bacteriocin produced by Lactococcus lactis D53. Int. J. Food Microbiol. 24(1–2), 295–308 (1994).
-
Pérez-Ramos, A., Madi-Moussa, D., Coucheney, F. & Drider, D. Current knowledge of the mode of action and immunity mechanisms of lab-bacteriocins. Microorganisms. 9(10), 2107 (2021).
-
Rodriguez, C., Ibáñez, R., Rollins-Smith, L. A., Gutiérrez, M. & Durant-Archibold, A. A. Antimicrobial secretions of toads (Anura, bufonidae): Bioactive extracts and isolated compounds against human pathogens. Antibiotics. 9(12), 1–15 (2020).
-
Adam, D. Overview of the clinical features of cefixime. Chemotherapy 44(suppl 1), 1–5 (1998).
-
Ramic, A. et al. Antimicrobial activity of quasi-enantiomeric cinchona alkaloid derivatives and prediction model developed by machine learning. Antibiotics. 10(6), 659 (2021).
-
Yadav, S. et al. 4-[1-(Substituted aryl/alkyl carbonyl)-benzoimidazol-2-yl]-benzenesulfonic acids: Synthesis, antimicrobial activity, QSAR studies, and antiviral evaluation. Eur. J. Med. Chem. 45(12), 5985–5997. https://doi.org/10.1016/j.ejmech.2010.09.065 (2010).
-
Le, P. N. T. & Desbois, A. P. Antibacterial effect of eicosapentaenoic acid against Bacillus cereus and Staphylococcus aureus: Killing kinetics, selection for resistance, and potential cellular target. Mar. Drugs. 15(11), 334 (2017).
-
Okhale, S. E., Amupitan, J. O., Ayo, R. G., Oladosu, P. O. & Okogun, J. I. Synthesis and antibacterial activity of 7-deacetoxy-7-hydroxygedunin. African. J. Pure Appl. Chem. 7(4), 157–163 (2013).
-
Bruning, A. et al. New prospects for nelfinavir in non-HIV-related diseases. Curr. Mol. Pharmacol. 3(2), 91–97 (2010).
-
Netilmicin sulfate. Drugs Today. 17(8):322–8 (1981).
-
Juven, B., Henis, Y., Jacoby, B. Studies on the mechanism of the antimicrobial action of oleuropein. J. Appl. Bacteriol. (1972)
-
Kneifel, H., Konig, W. A., Loeffler, W. & Müller, R. Ophiocordin, an antifungal antibiotic of Cordyceps ophioglossoides. Arch. Microbiol. 113(1–2), 121–130 (1977).
-
Navrátilová, A. et al. C-Geranylated flavonoids from Paulownia tomentosa fruits with antimicrobial potential and synergistic activity with antibiotics. Pharm Biol. 54(8), 1398–1407 (2016).
-
Triggle, D. J., Mitchell, J. M. & Filler, R. The pharmacology of physostigmine. CNS Drug Rev. 4(2), 87–136 (1998).
-
Makdoumi, K., Bäckman, A., Mortensen, J. & Crafoord, S. Evaluation of antibacterial efficacy of photo-activated riboflavin using ultraviolet light (UVA). Graefe’s Arch. Clin. Exp. Ophthalmol. 248(2), 207–212 (2010).
-
Lee, S. U., Sung, M. H., Ryu, H. W. & Lee, J. Verproside inhibits TNF-α-induced MUC5AC expression through suppression of the TNF-α/NF-κB pathway in human airway epithelial cells. Cytokine 77, 168 (2016).
-
Zhao, G. et al. Alpinetin: A review of its pharmacology and pharmacokinetics. Front. Pharmacol. 13, 1–23 (2022).
-
Seipke, R. F. & Hutchings, M. I. The regulation and biosynthesis of antimycins. Beilstein J. Org. Chem. 9, 2556–2563 (2013).
-
Nayaka, H. B., Londonkar, R. L., Umesh, M. K. & Tukappa, A. Antibacterial attributes of apigenin, isolated from Portulaca oleracea L. Int. J. Bacteriol. 2014, 1–8 (2014).
-
Marinescu, M. Synthesis of antimicrobial benzimidazole–pyrazole compounds and their biological activities. Antibiotics. 10(8), 1–29 (2021).
-
Dziedzic, A., Wojtyczka, R. D. W. & Kubina, R. Inhibition of oral streptococci growth induced by the complementary action of berberine chloride and antibacterial compounds. Molecules 20(8), 13705–13724 (2015).
-
Visintini Jaime, M. F., Campos, R. H., Martino, V. S., Cavallaro, L. V., Muschietti, L. V. Antipoliovirus activity of the organic extract of Eupatorium buniifolium: Isolation of euparin as an active compound. Evidence-based Complement Altern. Med. 2013 (2013).
-
Baker, B. P., Grant, J. A. Lauryl Sulfate Profile. 1–5 (1813).
-
Yan, Z.-K. Antimicrobial tests of icariin. Agric. Food Sci. (2005)
-
Asadi, A. et al. Minocycline, focus on mechanisms of resistance, antibacterial activity, and clinical effectiveness: Back to the future. J. Glob. Antimicrob Resist. 22, 161–174. https://doi.org/10.1016/j.jgar.2020.01.022 (2020).
-
Fregnan, A. M. et al. Synthesis of piplartine analogs and preliminary findings on structure–antimicrobial activity relationship. Med. Chem. Res. 26(3), 603–614 (2017).
-
Fialová, S. B. et al. Derivatization of rosmarinic acid enhances its in vitro antitumor, antimicrobial and antiprotozoal properties. Molecules 24(6), 1078 (2019).
-
Gwiazdowski, R., Kubiak, K., Juś, K., Marchwińska, K. & Gwiazdowska, D. The biocontrol of plant pathogenic fungi by selected lactic acid bacteria: from laboratory to field study. Agriculture 14(1), 61 (2024).
