LDL-binding IL-10 reduces vascular inflammation in atherosclerotic mice

ldl-binding-il-10-reduces-vascular-inflammation-in-atherosclerotic-mice
LDL-binding IL-10 reduces vascular inflammation in atherosclerotic mice

Data availability

Source data for the main results of this study are available in the Supplementary Information. Additional unprocessed data are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Valanti, E.-K. et al. Advances in biological therapies for dyslipidemias and atherosclerosis. Metabolism 116, 154461 (2021).

    Article  CAS  PubMed  Google Scholar 

  2. Hetherington, I. & Totary-Jain, H. Anti-atherosclerotic therapies: milestones, challenges, and emerging innovations. Mol. Ther. 30, 3106–3117 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Meza-Contreras, A. et al. Statin intolerance management: a systematic review. Endocrine 79, 430–436 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. Banach, M., Stulc, T., Dent, R. & Toth, P. P. Statin non-adherence and residual cardiovascular risk: there is need for substantial improvement. Int. J. Cardiol. 225, 184–196 (2016).

    Article  PubMed  Google Scholar 

  5. Ahmad, F. B. & Anderson, R. N. The leading causes of death in the US for 2020. JAMA 325, 1829–1830 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Gaidai, O., Cao, Y. & Loginov, S. Global cardiovascular diseases death rate prediction. Curr. Probl. Cardiol. 48, 101622 (2023).

  7. Gisterå, A. & Hansson, G. K. The immunology of atherosclerosis. Nat. Rev. Nephrol. 13, 368–380 (2017).

    Article  PubMed  Google Scholar 

  8. Wolf, D. & Ley, K. Immunity and inflammation in atherosclerosis. Circ. Res. 124, 315–327 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Libby, P. Inflammation in atherosclerosis—no longer a theory. Clin. Chem. 67, 131–142 (2021).

    Article  PubMed  Google Scholar 

  10. Orekhov, A. N. LDL and foam cell formation as the basis of atherogenesis. Curr. Opin. Lipidol. 29, 279–284 (2018).

    Article  CAS  PubMed  Google Scholar 

  11. Yuan, Y., Li, P. & Ye, J. Lipid homeostasis and the formation of macrophage-derived foam cells in atherosclerosis. Protein Cell 3, 173–181 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ridker, P. M. et al. Antiinflammatory therapy with canakinumab for atherosclerotic disease. N. Engl. J. Med. 377, 1119–1131 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Engelen, S. E., Robinson, A. J., Zurke, Y.-X. & Monaco, C. Therapeutic strategies targeting inflammation and immunity in atherosclerosis: how to proceed? Nat. Rev. Cardiol. 19, 522–542 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Moreno-Gonzalez, M. A., Ortega-Rivera, O. A. & Steinmetz, N. F. Two decades of vaccine development against atherosclerosis. Nano Today 50, 101822 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pinderski Oslund, L. J. et al. Interleukin-10 blocks atherosclerotic events in vitro and in vivo. Arter. Thromb. Vasc. Biol. 19, 2847–2853 (1999).

    Article  CAS  Google Scholar 

  16. Mallat, Z. et al. Protective role of interleukin-10 in atherosclerosis. Circ. Res. 85, e17–e24 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Caligiuri, G. et al. Interleukin-10 deficiency increases atherosclerosis, thrombosis, and low-density lipoproteins in apolipoprotein E knockout mice. Mol. Med. 9, 10–17 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Namiki, M. et al. Intramuscular gene transfer of interleukin-10 cDNA reduces atherosclerosis in apolipoprotein E-knockout mice. Atherosclerosis 172, 21–29 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Yoshioka, T. et al. Adeno-associated virus vector-mediated interleukin-10 gene transfer inhibits atherosclerosis in apolipoprotein E-deficient mice. Gene Ther. 11, 1772–1779 (2004).

    Article  CAS  PubMed  Google Scholar 

  20. Kamaly, N. et al. Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis. ACS Nano 10, 5280–5292 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim, M. et al. Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E−/-mice. Biomaterials 226, 119550 (2020).

    Article  CAS  PubMed  Google Scholar 

  22. Silver, A. B., Leonard, E. K., Gould, J. R. & Spangler, J. B. Engineered antibody fusion proteins for targeted disease therapy. Trends Pharmacol. Sci. 42, 1064–1081 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kita, T. et al. Role of oxidized LDL in atherosclerosis. Ann. N. Y. Acad. Sci. 947, 199–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Schiopu, A. et al. Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110, 2047–2052 (2004).

    Article  CAS  PubMed  Google Scholar 

  25. Schiopu, A. et al. Recombinant antibodies to an oxidized low-density lipoprotein epitope induce rapid regression of atherosclerosis in Apobec-1−/−/low-density lipoprotein receptor−/− mice. J. Am. Coll. Cardiol. 50, 2313–2318 (2007).

    Article  CAS  PubMed  Google Scholar 

  26. Nilsson, J. & Carlsson, R. Oxidized LDL and Antibodies Thereto for the Treatment of Atherosclerotic Plaques. Publication No. WO 2008/104194 A1 (World Intellectual Property Organization, 2007).

  27. Makabe, K., Tereshko, V., Gawlak, G., Yan, S. & Koide, S. Atomic-resolution crystal structure of Borrelia burgdorferi outer surface protein A via surface engineering. Protein Sci. 15, 1907–1914 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tacke, F. et al. Monocyte subsets differentially employ CCR2, CCR5, and CX3CR1 to accumulate within atherosclerotic plaques. J. Clin. Invest. 117, 185–194 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gautier, E. L., Jakubzick, C. & Randolph, G. J. Regulation of the migration and survival of monocyte subsets by chemokine receptors and its relevance to atherosclerosis. Arter. Thromb. Vasc. Biol. 29, 1412–1418 (2009).

    Article  CAS  Google Scholar 

  30. Georgakis, M. K., Bernhagen, J., Heitman, L. H., Weber, C. & Dichgans, M. Targeting the CCL2–CCR2 axis for atheroprotection. Eur. Heart J. 43, 1799–1808 (2022).

    Article  CAS  PubMed  Google Scholar 

  31. Swirski, F. K. et al. Ly-6Chi monocytes dominate hypercholesterolemia-associated monocytosis and give rise to macrophages in atheromata. J. Clin. Invest. 117, 195–205 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mantovani, A. et al. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25, 677–686 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Choudhury, R. P., Lee, J. M. & Greaves, D. R. Mechanisms of disease: macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat. Clin. Pract. Cardiovasc. Med. 2, 309–315 (2005).

    Article  CAS  PubMed  Google Scholar 

  34. Maguire, E. M., Pearce, S. W. & Xiao, Q. Foam cell formation: a new target for fighting atherosclerosis and cardiovascular disease. Vasc. Pharmacol. 112, 54–71 (2019).

    Article  CAS  Google Scholar 

  35. Reardon, C. A. & Getz, G. S. Mouse models of atherosclerosis. Curr. Opin. Lipidol. 12, 167–173 (2001).

    Article  CAS  PubMed  Google Scholar 

  36. Matsuura, E., Hughes, G. R. & Khamashta, M. A. Oxidation of LDL and its clinical implication. Autoimmun. Rev. 7, 558–566 (2008).

    Article  CAS  PubMed  Google Scholar 

  37. Li, S. et al. Targeting oxidized LDL improves insulin sensitivity and immune cell function in obese Rhesus macaques. Mol. Metab. 2, 256–269 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Peters, E. B. & Kibbe, M. R. Nanomaterials to resolve atherosclerosis. ACS Biomater. Sci. Eng. 6, 3693–3712 (2020).

    Article  CAS  PubMed  Google Scholar 

  39. Nong, J., Glassman, P. M. & Muzykantov, V. R. Targeting vascular inflammation through emerging methods and drug carriers. Adv. Drug Deliv. Rev. 184, 114180 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Shuvaev, V. V. et al. PECAM-targeted delivery of SOD inhibits endothelial inflammatory response. FASEB J. 25, 348 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Shuvaev, V. V. et al. Modulation of endothelial targeting by size of antibody–antioxidant enzyme conjugates. J. Control. Release 149, 236–241 (2011).

    Article  CAS  PubMed  Google Scholar 

  42. Hutmacher, C. & Neri, D. Antibody–cytokine fusion proteins: biopharmaceuticals with immunomodulatory properties for cancer therapy. Adv. Drug Deliv. Rev. 141, 67–91 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Bootz, F. & Neri, D. Immunocytokines: a novel class of products for the treatment of chronic inflammation and autoimmune conditions. Drug Discov. Today 21, 180–189 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Schwager, K. et al. Preclinical characterization of DEKAVIL (F8-IL10), a novel clinical-stage immunocytokine which inhibits the progression of collagen-induced arthritis. Arthritis Res. Ther. 11, R142 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Galeazzi, M. et al. FRI0118 Dekavil (F8IL10)–Update on the Results of Clinical Trials Investigating the Immunocytokine in Patients with Rheumatoid Arthritis (BMJ Publishing Group, 2018).

  46. Toshima, S. et al. Circulating oxidized low density lipoprotein levels: a biochemical risk marker for coronary heart disease. Arter. Thromb. Vasc. Biol. 20, 2243–2247 (2000).

    Article  CAS  Google Scholar 

  47. Boullier, A. et al. Scavenger receptors, oxidized LDL, and atherosclerosis. Ann. N. Y. Acad. Sci. 947, 214–223 (2001).

    Article  CAS  PubMed  Google Scholar 

  48. Sziksz, E. et al. Fibrosis related inflammatory mediators: role of the IL-10 cytokine family. Mediators Inflamm. 2015, 764641 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Getz, G. S. & Reardon, C. A. Do the Apoe−/− and Ldlr−/− mice yield the same insight on atherogenesis? Arter. Thromb. Vasc. Biol. 36, 1734–1741 (2016).

    Article  CAS  Google Scholar 

  50. Sakkers, T. R. et al. Sex differences in the genetic and molecular mechanisms of coronary artery disease. Atherosclerosis 384, 117279 (2023).

  51. Gonçalves, I. et al. Identification of the target for therapeutic recombinant anti-apoB-100 peptide antibodies in human atherosclerotic lesions. Atherosclerosis 205, 96–100 (2009).

    Article  PubMed  Google Scholar 

  52. Watkins, E. A. et al. Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Sci. Immunol. 6, eabe1801 (2021).

    Article  CAS  PubMed  Google Scholar 

  53. Butcher, M. J., Herre, M., Ley, K. & Galkina, E. Flow cytometry analysis of immune cells within murine aortas. J. Vis. Exp. https://doi.org/10.3791/2848 (2011).

Download references

Acknowledgements

This work was supported by the Chicago Immunoengineering Innovation Center of the University of Chicago, the Gracias Family Foundation, the National Heart, Lung and Blood Institute (T32HL007605-35, L.R.V.), the American Heart Association Postdoctoral Fellowship Award (#916845, L.R.V.) and the NIH T32 MSTP Training Grants (#T32GM150375 and #T32GM007281, S.N.d.M.). We thank C. R. Alulis for helpful conversations regarding murine atherosclerosis models; S. Gomes for tissue culture and general laboratory support; the Cytometry and Antibody Technology Core Facility (Cancer Center Support Grant P30CA014599), the Animal Resources Center, the Human Tissue Resource Center, and the Integrated Light Microscopy Core at the University of Chicago. Figures were created with BioRender.com.

Author information

Authors and Affiliations

  1. Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, USA

    Lisa R. Volpatti, Salvador Norton de Matos, Gustavo Borjas, Taryn N. Beckman, Joseph W. Reda, Elyse A. Watkins, Zhengjie Zhou & Jeffrey A. Hubbell

  2. Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA

    Lisa R. Volpatti

  3. Department of Chemical and Biological Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA

    Lisa R. Volpatti

  4. Medical Scientist Training Program, Pritzker School of Medicine, University of Chicago, Chicago, IL, USA

    Salvador Norton de Matos

  5. Committee on Molecular Metabolism and Nutrition, Biological Sciences Division, University of Chicago, Chicago, IL, USA

    Taryn N. Beckman & Yun Fang

  6. Department of Medicine, University of Chicago, Chicago, IL, USA

    Zhengjie Zhou & Yun Fang

  7. Animal Resources Center, University of Chicago, Chicago, IL, USA

    Mindy Nguyen & Ani Solanki

  8. Committee on Immunology, University of Chicago, Chicago, IL, USA

    Jeffrey A. Hubbell

  9. Committee on Cancer Biology, University of Chicago, Chicago, IL, USA

    Jeffrey A. Hubbell

  10. Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, NY, USA

    Jeffrey A. Hubbell

  11. Departments of Biology and Chemistry, Faculty of Arts and Science, New York University, New York, NY, USA

    Jeffrey A. Hubbell

  12. Department of Biochemistry and Molecular Pharmacology, Grossman School of Medicine, NYU Langone Health, New York, NY, USA

    Jeffrey A. Hubbell

Authors

  1. Lisa R. Volpatti
  2. Salvador Norton de Matos
  3. Gustavo Borjas
  4. Taryn N. Beckman
  5. Joseph W. Reda
  6. Elyse A. Watkins
  7. Zhengjie Zhou
  8. Mindy Nguyen
  9. Ani Solanki
  10. Yun Fang
  11. Jeffrey A. Hubbell

Contributions

L.R.V. conceptualized the project, designed the methodology, performed validation, formal analysis, investigation, data curation and visualization, supervised and administered the project, acquired funding and wrote the original manuscript draft. S.N.d.M. designed the methodology and software, performed validation, formal analysis, investigation and visualization, and reviewed and edited the manuscript. G.B. designed the methodology and software, conducted formal analysis and investigation, and reviewed and edited the manuscript. T.N.B. designed the methodology, conducted formal analysis and investigation, and reviewed and edited the manuscript. J.W.R. designed the methodology, conducted investigation, and reviewed and edited the manuscript. E.A.W. designed the methodology, conducted investigation, procured resources, and reviewed and edited the manuscript. Z.Z. designed the methodology, conducted investigation, and reviewed and edited the manuscript. M.N. designed the methodology, conducted investigation, and reviewed and edited the manuscript. A.S. designed the methodology, conducted investigation, and reviewed and edited the manuscript. Y.F. designed the methodology, procured resources, supervised the project, and reviewed and edited the manuscript. J.A.H. conceptualized the project, procured resources, supervised and administered the project, acquired funding, and reviewed and edited the manuscript.

Corresponding authors

Correspondence to Lisa R. Volpatti or Jeffrey A. Hubbell.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Prediman Shah and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volpatti, L.R., Norton de Matos, S., Borjas, G. et al. LDL-binding IL-10 reduces vascular inflammation in atherosclerotic mice. Nat. Biomed. Eng (2026). https://doi.org/10.1038/s41551-025-01573-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41551-025-01573-8