References
-
Dewhirst, M. W. & Secomb, T. W. Transport of drugs from blood vessels to tumour tissue. Nat. Rev. Cancer 17, 738–750 (2017).
-
Beach, M. A. et al. Polymeric nanoparticles for drug delivery. Chem. Rev. 124, 5505–5616 (2024).
-
Jain, K. K. An overview of drug delivery systems. Methods Mol. Biol. 2059, 1–54 (2020).
-
Wilhelm, S. et al. Analysis of nanoparticle delivery to tumours. Nat. Rev. Mater. 1 https://doi.org/10.1038/natrevmats.2016.14 (2016).
-
Sindhwani, S. et al. The entry of nanoparticles into solid tumours. Nat. Mater. 19, 566–575 (2020).
-
Fan, D. et al. Nanomedicine in cancer therapy. Signal Transduct. Target Ther. 8, 293 (2023).
-
Zhou, Q. et al. Enzyme-activatable polymer-drug conjugate augments tumour penetration and treatment efficacy. Nat. Nanotechnol. 14, 799–809 (2019).
-
Spees, J. L., Olson, S. D., Whitney, M. J. & Prockop, D. J. Mitochondrial transfer between cells can rescue aerobic respiration. Proc. Natl. Acad. Sci. USA 103, 1283–1288 (2006).
-
Ruivo, C. F., Adem, B., Silva, M. & Melo, S. A. The Biology of Cancer Exosomes: Insights and New Perspectives. Cancer Res 77, 6480–6488 (2017).
-
Sheehan, C. & D’Souza-Schorey, C. Tumor-derived extracellular vesicles: molecular parcels that enable regulation of the immune response in cancer. J. Cell Sci. 132 https://doi.org/10.1242/jcs.235085 (2019).
-
Rustom, A., Saffrich, R., Markovic, I., Walther, P. & Gerdes, H. H. Nanotubular highways for intercellular organelle transport. Science 303, 1007–1010 (2004).
-
Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).
-
Zampieri, L. X., Silva-Almeida, C., Rondeau, J. D. & Sonveaux, P. Mitochondrial transfer in cancer: A comprehensive review. Int. J. Mol. Sci. 22 https://doi.org/10.3390/ijms22063245 (2021).
-
Torralba, D., Baixauli, F. & Sanchez-Madrid, F. Mitochondria know no boundaries: Mechanisms and functions of intercellular mitochondrial transfer. Front Cell Dev. Biol. 4, 107 (2016).
-
Sahinbegovic, H. et al. Intercellular mitochondrial transfer in the tumor microenvironment. Cancers (Basel) 12 https://doi.org/10.3390/cancers12071787 (2020).
-
Guo, L. et al. Tunneling nanotubular expressways for ultrafast and accurate M1 macrophage delivery of anticancer drugs to metastatic ovarian carcinoma. ACS Nano 13, 1078–1096 (2019).
-
Du, Y. et al. Engineered microglia potentiate the action of drugs against glioma through extracellular vesicles and tunneling nanotubes. Adv. Health Mater. 10, e2002200 (2021).
-
Yang, Y. et al. Hierarchical self-recognition and response in CSC and non-CSC micro-niches for cancer therapy. Biomaterials 308, 122581 (2024).
-
Wang, S. et al. The mitophagy pathway and its implications in human diseases. Signal Transduct. Target Ther. 8, 304 (2023).
-
Picca, A., Faitg, J., Auwerx, J., Ferrucci, L. & D’Amico, D. Mitophagy in human health, ageing and disease. Nat. Metab. 5, 2047–2061 (2023).
-
Needs, H. I. et al. Rescue of mitochondrial import failure by intercellular organellar transfer. Nat. Commun. 15, 988 (2024).
-
Al Amir Dache, Z. & Thierry, A. R. Mitochondria-derived cell-to-cell communication. Cell Rep. 42, 112728 (2023).
-
Borcherding, N. & Brestoff, J. R. The power and potential of mitochondria transfer. Nature 623, 283–291 (2023).
-
Ryu, D. et al. Urolithin A induces mitophagy and prolongs lifespan in C. elegans and increases muscle function in rodents. Nat. Med 22, 879–888 (2016).
-
Doudna, J. A. & Charpentier, E. Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346, 1258096 (2014).
-
Li, T. et al. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct. Target Ther. 8, 36 (2023).
-
Zhou, D. et al. The transition from linear to highly branched poly(beta-amino ester)s: Branching matters for gene delivery. Sci. Adv. 2, e1600102 (2016).
-
Lv, J., Wang, H., Rong, G. & Cheng, Y. Fluorination promotes the cytosolic delivery of genes, proteins, and peptides. Acc. Chem. Res. 55, 722–733 (2022).
-
Katayama, H., Kogure, T., Mizushima, N., Yoshimori, T. & Miyawaki, A. A sensitive and quantitative technique for detecting autophagic events based on lysosomal delivery. Chem. Biol. 18, 1042–1052 (2011).
-
Sun, N. et al. A fluorescence-based imaging method to measure in vitro and in vivo mitophagy using mt-Keima. Nat. Protoc. 12, 1576–1587 (2017).
-
Buck, M. D. et al. Mitochondrial dynamics controls T cell fate through metabolic programming. Cell 166, 63–76 (2016).
-
Marlein, C. R. et al. CD38-driven mitochondrial trafficking promotes bioenergetic plasticity in multiple myeloma. Cancer Res 79, 2285–2297 (2019).
-
Nunnari, J. & Suomalainen, A. Mitochondria: In sickness and in health. Cell 148, 1145–1159 (2012).
-
Gao, L. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2, 577–583 (2007).
-
Gao, P., Pan, W., Li, N. & Tang, B. Boosting cancer therapy with organelle-targeted nanomaterials. ACS Appl Mater. Interfaces 11, 26529–26558 (2019).
-
Wang, L. & Niu, C. IR780-based nanomaterials for cancer imaging and therapy. J. Mater. Chem. B 9, 4079–4097 (2021).
-
Liew, S. S. et al. Smart design of nanomaterials for mitochondria-targeted nanotherapeutics. Angew. Chem. Int. Ed. Engl. 60, 2232–2256 (2021).
-
Veranic, P. et al. Different types of cell-to-cell connections mediated by nanotubular structures. Biophys. J. 95, 4416–4425 (2008).
-
Saha, T. et al. Intercellular nanotubes mediate mitochondrial trafficking between cancer and immune cells. Nat. Nanotechnol. 17, 98–106 (2022).
-
Macia, E. et al. Dynasore, a cell-permeable inhibitor of dynamin. Dev. Cell 10, 839–850 (2006).
-
Petit, J. M., Maftah, A., Ratinaud, M. H. & Julien, R. 10N-nonyl acridine orange interacts with cardiolipin and allows the quantification of this phospholipid in isolated mitochondria. Eur. J. Biochem 209, 267–273 (1992).
-
Hase, K. et al. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell Biol. 11, 1427–1432 (2009).
-
Fransson, S., Ruusala, A. & Aspenstrom, P. The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking. Biochem Biophys. Res Commun. 344, 500–510 (2006).
-
Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).
-
Wang, C. et al. Dynamic tubulation of mitochondria drives mitochondrial network formation. Cell Res 25, 1108–1120 (2015).
-
Sato, O. et al. Mitochondria-associated myosin 19 processively transports mitochondria on actin tracks in living cells. J. Biol. Chem. 298, 101883 (2022).
-
Klionsky, D. J. et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12, 1–222 (2016).
-
Moscat, J. & Diaz-Meco, M. T. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell 137, 1001–1004 (2009).
-
Lu, Y. et al. Cellular mitophagy: Mechanism, roles in diseases and small molecule pharmacological regulation. Theranostics 13, 736–766 (2023).
-
Bock, F. J. & Tait, S. W. G. Mitochondria as multifaceted regulators of cell death. Nat. Rev. Mol. Cell Biol. 21, 85–100 (2020).
-
Zong, Y. et al. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct. Target Ther. 9, 124 (2024).
-
Vasan, K., Werner, M. & Chandel, N. S. Mitochondrial metabolism as a target for cancer therapy. Cell Metab. 32, 341–352 (2020).
-
Guo, X. et al. Mito-bomb: Targeting mitochondria for cancer therapy. Adv. Mater. 33, e2007778 (2021).
-
Barritt, J. A., Brenner, C. A., Malter, H. E. & Cohen, J. Mitochondria in human offspring derived from ooplasmic transplantation. Hum. Reprod. 16, 513–516 (2001).
-
Jacoby, E. et al. Mitochondrial augmentation of hematopoietic stem cells in children with single large-scale mitochondrial DNA deletion syndromes. Sci. Transl. Med 14, eabo3724 (2022).
