References
-
Gompper, G. et al. The 2025 motile active matter roadmap. J. Phys.: Condens. Matter 37, 143501 (2025).
-
Yashin, V. V. & Balazs, A. C. Pattern formation and shape changes in self-oscillating polymer gels. Science 314, 798 (2006).
-
Yoshida, R. Self-oscillating gels driven by the Belousov–Zhabotinsky reaction as novel smart materials. Adv. Mater. 22, 3463 (2010).
-
Grinthal, A. & Aizenberg, J. Adaptive all the way down: building responsive materials from hierarchies of chemomechanical feedback. Chem. Soc. Rev. 42, 7072 (2013).
-
Blanc, B. et al. Active pulsatile gels: From a chemical microreactor to a polymeric actuator. Langmuir 40, 6862 (2024).
-
Blanc, B. et al. Collective chemomechanical oscillations in active hydrogels. Proc. Natl Acad. Sci. USA. 121, e2313258121 (2024).
-
Xue, L. et al. Light-regulated growth from dynamic swollen substrates for making rough surfaces. Nat. Commun. 11, 963 (2020).
-
Chen, M., Zhong, M. & Johnson, J. A. Light-controlled radical polymerization: mechanisms, methods, and applications. Chem. Rev. 116, 10167 (2016).
-
Whitesides, G. M. & Grzybowski, B. Self-assembly at all scales. Science 295, 2418 (2002).
-
Freeman, R. et al. Reversible self-assembly of superstructured networks. Science 362, 808 (2018).
-
Kim, Y.-K., Wang, X., Mondkar, P., Bukusoglu, E. & Abbott, N. L. Self-reporting and self-regulating liquid crystals. Nature 557, 539 (2018).
-
Li, S. et al. Liquid-induced topological transformations of cellular microstructures. Nature 592, 386 (2021).
-
Liu, S., Shankar, S., Marchetti, M. C. & Wu, Y. Viscoelastic control of spatiotemporal order in bacterial active matter. Nature 590, 80 (2021).
-
Sokolov, A., Apodaca, M. M., Grzybowski, B. A. & Aranson, I. S. Swimming bacteria power microscopic gears. Proc. Natl Acad. Sci. USA. 107, 969 (2010).
-
Gu, H. et al. Magnetic cilia carpets with programmable metachronal waves. Nat. Commun. 11, 2637 (2020).
-
Wang, W. et al. Cilia metasurfaces for electronically programmable microfluidic manipulation. Nature 605, 681 (2022).
-
Sanchez, T., Chen, D. T. N., DeCamp, S. J., Heymann, M. & Dogic, Z. Spontaneous motion in hierarchically assembled active matter. Nature 491, 431 (2012).
-
Schaller, V., Weber, C., Semmrich, C., Frey, E. & Bausch, A. R. Polar patterns of driven filaments. Nature 467, 73 (2010).
-
Muresan, C. G. et al. F-actin architecture determines constraints on myosin thick filament motion. Nat. Commun. 13, 7008 (2022).
-
Yadav, V. et al. Filament nucleation tunes mechanical memory in active polymer networks. Adv. Funct. Mater. 29, (2019).
-
Linsmeier, I. et al. Disordered actomyosin networks are sufficient to produce cooperative and telescopic contractility. Nat. Commun. 7, 12615 (2016).
-
Redford, S. A. et al. Motor crosslinking augments elasticity in active nematics. Soft Matter 20, 2480 (2024).
-
Lemma, L. M. et al. Spatio-temporal patterning of extensile active stresses in microtubule-based active fluids. PNAS Nexus 2, pgad130 (2023).
-
Murrell, M., Oakes, P. W., Lenz, M. & Gardel, M. L. Forcing cells into shape: the mechanics of actomyosin contractility. Nat. Rev. Mol. Cell Biol. 16, 486 (2015).
-
Sakamoto, R. et al. Tug-of-war between actomyosin-driven antagonistic forces determines the positioning symmetry in cell-sized confinement. Nat. Commun. 11, 3063 (2020).
-
Sakamoto, R., Izri, Z., Shimamoto, Y., Miyazaki, M. & Maeda, Y. T. Geometric trade-off between contractile force and viscous drag determines the actomyosin-based motility of a cell-sized droplet. Proc. Natl Acad. Sci. USA. 119, e2121147119 (2022).
-
Adkins, R. et al. Dynamics of active liquid interfaces. Science 377, 768 (2022).
-
Ruijgrok, P. V. et al. Optical control of fast and processive engineered myosins in vitro and in living cells. Nat. Chem. Biol. 17, 540 (2021).
-
Ross, T. D. et al. Controlling organization and forces in active matter through optically defined boundaries. Nature 572, 224 (2019).
-
Malik-Garbi, M. et al. Scaling behaviour in steady-state contracting actomyosin networks. Nat. Phys. 15, 509 (2019).
-
Oakes, P. W. et al. Optogenetic control of RhoA reveals zyxin-mediated elasticity of stress fibres. Nat. Commun. 8, 15817 (2017).
-
Schuppler, M., Keber, F. C., Kröger, M. & Bausch, A. R. Boundaries steer the contraction of active gels. Nat. Commun. 7, 13120 (2016).
-
Cavanaugh, K. E., Oakes, P. W. & Gardel, M. L. Optogenetic control of RhoA to probe subcellular mechanochemical circuitry. Curr. Protoc. Cell Biol. 86, e102 (2020).
-
Chandrasekar, S., Beach, J. R. & Oakes, P. W. Shining a light on RhoA: optical control of cell contractility. Int. J. Biochem. Cell Biol. 161, 106442 (2023).
-
Qu, Z. et al. Persistent fluid flows defined by active matter boundaries. Commun. Phys. 4, 1 (2021).
-
Mathijssen, A. J. T. M., Culver, J., Bhamla, M. S. & Prakash, M. Collective intercellular communication through ultra-fast hydrodynamic trigger waves. Nature 571, 560 (2019).
-
Ruiz, F., Garreau de Loubresse, N., Klotz, C., Beisson, J. & Koll, F. Centrin deficiency in Paramecium affects the geometry of basal-body duplication. Curr. Biol. 15, 2097 (2005).
-
Mahadevan, L. & Matsudaira, P. Motility powered by supramolecular springs and ratchets. Science 288, 95 (2000).
-
Hawkes, R. B. & Holberton, D. V. Myonemal contraction of Spirostomum. I. Kinetics of contraction and relaxation. J. Cell. Physiol. 84, 225 (1974).
-
Misra, G., Dickinson, R. B. & Ladd, A. J. C. Mechanics of Vorticella contraction. Biophys. J. 98, 2923 (2010).
-
Kilpatrick, A. M., Honts, J. E., Sleister, H. M. & Fowler, C. A. Solution NMR structures of the C-domain of Tetrahymena cytoskeletal protein Tcb2 reveal distinct calcium-induced structural rearrangements. Proteins 84, 1748 (2016).
-
Floyd, C. et al. A unified model for the dynamics of ATP-independent ultrafast contraction. Proc. Natl. Acad. Sci. USA. 120, e2217737120 (2023).
-
Upadhyaya, A. et al. Power-limited contraction dynamics of Vorticella convallaria: an ultrafast biological spring. Biophys. J. 94, 265 (2008).
-
Chung, E. G. & Ryu, S. Stalk-length-dependence of the contractility of Vorticella convallaria. Phys. Biol. 14, 066002 (2017).
-
Ryu, S., Lang, M. J. & Matsudaira, P. Maximal force characteristics of the Ca2+-powered actuator of Vorticella convallaria. Biophys. J. 103, 860 (2012).
-
Chang, R. & Prakash, M. Topological damping in an ultrafast giant cell. Proc. Natl. Acad. Sci. USA. 120, e2303940120 (2023).
-
Chang, R. & Prakash, M. Cellular Olympics: Ultrafast Cellular Motility Across the Tree of Life. Annu. Rev. Microbiol. 79, 405–426 (2025).
-
Lannan, J. et al. Fishnet mesh of centrin-Sfi1 drives ultrafast calcium-activated contraction of the giant cell Spirostomum ambiguum. bioRxiv 2024 (2024).
-
Norton, M. M., Grover, P., Hagan, M. F. & Fraden, S. Optimal control of active nematics. Phys. Rev. Lett. 125, 178005 (2020).
-
Ghosh, S., Joshi, C., Baskaran, A. & Hagan, M.F. Spatiotemporal control of structure and dynamics in a polar active fluid. Soft Matter 20, 7059–7071 (2024).
-
Ghosh, S., Baskaran, A. & Hagan, M.F. Achieving designed texture and flows in bulk active nematics using optimal control theory. J. Chem. Phys. 162, 134902 (2025).
-
Wagner, C. G., Norton, M. M., Park, J. S. & Grover, P. Exact coherent structures and phase space geometry of preturbulent 2D active nematic channel flow. Phys. Rev. Lett. 128, 028003 (2022).
-
Nishiyama, K. et al. Closed-loop control of active nematic flows. Phys. Rev. X. 15, 041053 (2025)
-
Shankar, S., Scharrer, L. V., Bowick, M. J. & Marchetti, M. C. Design rules for controlling active topological defects. Proc. Natl Acad. Sci. USA. 121, e2400933121 (2024).
-
Floyd, C., Dinner, A.R. & Vaikuntanathan, S. Learning to control non-equilibrium dynamics using local imperfect gradients. arXiv:2404.03798 (2024).
-
Floyd, C., Dinner, A.R. & Vaikuntanathan, S. Tailoring interactions between active nematic defects with reinforcement learning. Soft Matter. 21, 4488–4497 (2025).
-
Takemasa, T. et al. Cloning and sequencing of the gene for Tetrahymena calcium-binding 25-kDa protein. J. Biol. Chem. 264, 19293 (1989).
-
Kilpatrick, A. M. et al. Backbone and side-chain chemical shift assignments for the C-terminal domain of Tcb2, a cytoskeletal calcium-binding protein from Tetrahymena thermophila. Biomol. NMR Assign. 10, 281 (2016).
-
Hanyu, K., Takemasa, T., Numata, O., Takahashi, M. & Watanabe, Y. Immunofluorescence localization of a 25-kDa Tetrahymena EF-hand Ca2+-binding protein, TCBP-25, in the cell cortex and possible involvement in conjugation. Exp. Cell Res. 219, 487 (1995).
-
Nakagawa, T., Fujiu, K., Cole, E. S. & Numata, O. Involvement of a 25 kDa Tetrahymena Ca2+-binding protein in pronuclear exchange. Cell Struct. Funct. 33, 151 (2008).
-
Ohnishi, K. & Watanabe, Y. Purification and some properties of a new Ca2+-binding protein (TCBP-10) present in Tetrahymena cilium. J. Biol. Chem. 258, 13978 (1983).
-
Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493 (2024).
-
Honts, J. E. & Williams, N. E. Novel cytoskeletal proteins in the cortex of Tetrahymena. J. Eukaryot. Microbiol. 50, 9 (2003).
-
Yang, C.-F. & Tsai, W.-C. Calmodulin: The switch button of calcium signaling. Tzu Chi Med. J. 34, 15 (2022).
-
DMNP-EDTA, tetrapotassium salt (caged calcium). Biotium https://biotium.com/product/dmnp-edta-tetrapotassium-salt-caged-calcium (2016).
-
Bers, D. M., Patton, C. W. & Nuccitelli, R. A practical guide to the preparation of Ca2+ buffers. Methods Cell Biol. 40, 3 (1994).
-
Barreto-Chang, O.L. & Dolmetsch, R.E. Calcium imaging of cortical neurons using Fura-2 AM. J. Vis. Exp. (2009).
-
Tsien, R. & Pozzan, T. Measurement of cytosolic free Ca2+ with Quin2. Methods Enzymol. 172, 230–262 (1989).
-
Bechhoefer, J.Control Theory for Physicists (Cambridge Univ. Press, 2021).
-
Polygon: Cellular-resolution optogenetics & photostimulation. Mightex https://www.mightexbio.com/polygon (2017).
-
Yang, F., Liu, S., Lee, H. J., Phillips, R. & Thomson, M. Dynamic flow control through active matter programming language. Nat. Mater. 24, 615 (2025).
-
Chandrasekharan, N.P., Lei, X., Honts, J., Bhamla, S. & Coyle, S.M. Decoding ultrasensitive self-assembly of the calcium-regulated Tetrahymena cytoskeletal protein Tcb2 using optical actuation. J. Biol. Chem. 301, 10824 (2025).
-
Phan-Thien, N. & Mai-Duy, N.Understanding Viscoelasticity: An Introduction to Rheology (Springer, 2013).
-
Ashby, M. F. & Cebon, D. Materials selection in mechanical design. J. Phys. IV 3, C7 (1993).
-
Li, X. et al. Tensile force-induced cytoskeletal remodeling: Mechanics before chemistry. PLoS Comput. Biol. 16, e1007693 (2020).
-
Sutton, R.S. & Barto, A.G.Reinforcement Learning: An Introduction (MIT Press, 2018).
-
Falk, M. J., Alizadehyazdi, V., Jaeger, H. & Murugan, A. Learning to control active matter. Phys. Rev. Res. 3, 033291 (2021).
-
Chennakesavalu, S. & Rotskoff, G.M. Probing the theoretical and computational limits of dissipative design. J. Chem. Phys. 155, (2021).
-
Silver, D. et al. Deterministic policy gradient algorithms. in Proc. International Conference on Machine Learning 387–395 (PMLR, 2014).
-
Lillicrap, T.P. et al. Continuous control with deep reinforcement learning. arXiv:1509.02971 (2015).
-
Floyd, C., Levine, H., Jarzynski, C. & Papoian, G. A. Understanding cytoskeletal avalanches using mechanical stability analysis. Proc. Natl Acad. Sci. USA. 118, e2110239118 (2021).
-
Vicente-Manzanares, M., Ma, X., Adelstein, R. S. & Horwitz, A. R. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat. Rev. Mol. Cell Biol. 10, 778 (2009).
-
Sakamoto, R. & Murrell, M. P. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nat. Commun. 15, 9731 (2024).
-
Soares e Silva, M. et al. Active multistage coarsening of actin networks driven by myosin motors. Proc. Natl Acad. Sci. USA. 108, 9408 (2011).
-
Wagoner, J. A. & Dill, K. A. Evolution of mechanical cooperativity among myosin II motors. Proc. Natl Acad. Sci. USA. 118, e2101871118 (2021).
-
Krishna, A., Savinov, M., Ierushalmi, N., Mogilner, A. & Keren, K. Size-dependent transition from steady contraction to waves in actomyosin networks with turnover. Nat. Phys. 20, 123–134 (2024).
-
Mattila, P. K. & Lappalainen, P. Filopodia: molecular architecture and cellular functions. Nat. Rev. Mol. Cell Biol. 9, 446 (2008).
-
Murrell, M. P. & Gardel, M. L. F-actin buckling coordinates contractility and severing in a biomimetic actomyosin cortex. Proc. Natl Acad. Sci. USA. 109, 20820 (2012).
-
Lenz, M. Reversal of contractility as a signature of self-organization in cytoskeletal bundles. eLife 9, e51751 (2020).
-
Bement, W. M. et al. Activator–inhibitor coupling between Rho signalling and actin assembly makes the cell cortex an excitable medium. Nat. Cell Biol. 17, 1471 (2015).
-
Maxian, O., Dinner, A.R. & Munro, E. Actin network heterogeneity tunes activator-inhibitor dynamics at the cell cortex. Proc. Natl. Acad. Sci. U.S.A. 122, e2520485122 (2025).
-
Ishihara, A., Gee, K., Schwartz, S., Jacobson, K. & Lee, J. Photoactivation of caged compounds in single living cells: an application to the study of cell locomotion. Biotechniques 23, 268 (1997).
-
Blosser, M. C., Horst, B. G. & Keller, S. L. cDICE method produces giant lipid vesicles under physiological conditions of charged lipids and ionic solutions. Soft Matter 12, 7364 (2016).
-
Abkarian, M., Loiseau, E. & Massiera, G. Continuous droplet interface crossing encapsulation (cDICE) for high throughput monodisperse vesicle design. Soft Matter 7, 4610 (2011).
-
Moga, A., Yandrapalli, N., Dimova, R. & Robinson, T. Optimization of the inverted emulsion method for high-yield production of biomimetic giant unilamellar vesicles. ChemBioChem 20, 2674 (2019).
-
Kirillov, A. et al. Segment anything. Proc. IEEE/CVF Int. Conf. Comput. Vis. 4015–4026 (2023).
-
Nar, K. segment-anything-video: MetaSeg: Packaged version of the Segment Anything repository. GitHub.
-
Thielicke, W. & Sonntag, R. Particle image velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab. J. Open Res. Softw. 9, 12 (2021).
-
Karaev, N. et al. CoTracker: It is better to track together. in Proc. ECCV (2024).
-
Tian, J. & other contributors. ReinforcementLearning.jl: A reinforcement learning package for the Julia programming language. GitHub https://github.com/JuliaReinforcementLearning/ReinforcementLearning.jl (2020).
-
Lei, X. et al. Light-induced assembly and repeatable actuation in Ca2+-driven chemomechanical protein networks_Nat_Comm_2026. Zenodo https://doi.org/10.5281/zenodo.18318970 (2026).
-
Lei, X. et al. TCB2 network: Tcb2 NatComm 2026Jan. Zenodo https://doi.org/10.5281/zenodo.18394283 (2026).
