References
-
Nelson, K. E. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32, 2386–2395 (2004).
-
Doumith, M., Buchrieser, C., Glaser, P., Jacquet, C. & Martin, P. Differentiation of the major listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 42, 3819–3822 (2004).
-
Pamboukian, R., Ferguson, M., Jarvis, K., Grocholl, J. & Burall, L. Multilab validation report for the verification and subtyping of listeria monocytogenes using qPCR. J. Food Prot. 86. https://doi.org/10.1016/j.jfp.2023.100178 (2023).
-
Fiore, A., Treglia, I., Ciccaglioni, G., Ortoffi, M. F. & Gattuso, A. Application of a loop-mediated isothermal amplification (LAMP) assay for the detection of listeria monocytogenes in Cooked Ham. Foods 12. https://doi.org/10.3390/foods12010193 (2023).
-
Arunrut, N., Jitrakorn, S., Tondee, B., Saksmerprome, V. & Kiatpathomchai, W. Real-time triplex loop-mediated isothermal amplification (LAMP) using a turbidimeter for detection of shrimp infectious hypodermal and hematopoietic necrosis virus IHHNV. J. Aquat. Anim. Health 36, 205–219 (2024).
-
Arunrut, N. et al. Development of colorimetric triplex reverse transcription loop-mediated isothermal amplification for rapid and sensitive detection of shrimp yellow head virus (YHV). Aquacult. Int. 33. https://doi.org/10.1007/s10499-024-01703-0 (2025).
-
Chertow, D. S. Next-generation diagnostics with CRISPR. Science 360, 381–382 (2018).
-
Yao, Y. et al. Development of small molecule biosensors by coupling the recognition of the bacterial allosteric transcription factor with isothermal strand displacement amplification. Chem. Commun. 54, 4774–4777 (2018).
-
Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).
-
Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).
-
Li, S.-Y. et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 4. https://doi.org/10.1038/s41421-018-0028-z (2018).
-
Chiu, C. Cutting-edge infectious disease diagnostics with CRISPR. Cell Host Microbe 23, 702–704 (2018).
-
Xiao, Y. et al. A rapid and inexpensive nucleic acid detection platform for Listeria monocytogenes based on the CRISPR/Cas12a system. Talanta 259. https://doi.org/10.1016/j.talanta.2023.124558 (2023).
-
Shi, C., Ge, Y., Zhao, C. & Ma, C. Aptameric molecular switch for cascade signal amplification. Clin. Chem. 58, 384–390 (2012).
-
Suh, S. H. et al. Use of DNA aptamer for sandwich type detection of Listeria monocytogenes. Anal. Biochem. 557, 27–33 (2018).
-
Bruno, J. G. et al. Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid listeria detection. J. Fluoresc. 25, 173–183 (2014).
-
Zhang, L. et al. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens. Bioelectron. 86, 1–7 (2016).
-
Suh, S. H., Dwivedi, H. P., Choi, S. J. & Jaykus, L.-A. Selection and characterization of DNA aptamers specific for Listeria species. Anal. Biochem. 459, 39–45 (2014).
-
Lee, S.-H. et al. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes. Biosens. Bioelectron. 68, 272–280 (2015).
-
Dunne, M. et al. Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep. 29, 1336–1350.e1334 (2019).
-
Wieczorek, K. & Osek, J. Prevalence, genetic diversity and antimicrobial resistance of Listeria monocytogenes isolated from fresh and smoked fish in Poland. Food Microbiol. 64, 164–171 (2017).
-
Swaminathan, B. & Gerner-Smidt, P. The epidemiology of human listeriosis. Microbes Infect. 9, 1236–1243 (2007).
-
Ohk, S. H., Koo, O. K., Sen, T., Yamamoto, C. M. & Bhunia, A. K. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J. Appl. Microbiol. 109, 808–817 (2010).
-
Duan, N. et al. Selection, identification and application of a DNA aptamer against Listeria monocytogenes. Food Control 33, 239–243 (2013).
-
He, S., Li, H., Gomes, C. L. & Voronine, D. V. Tip-enhanced Raman scattering of DNA aptamers for Listeria monocytogenes. Biointerphases 13. https://doi.org/10.1116/1.5022303 (2018).
-
Liu, Y. et al. Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles. Microchim. Acta 185. https://doi.org/10.1007/s00604-018-2896-1 (2018)
-
Cao, X. et al. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res. 37, 4621–4628 (2009).
-
Feng, J., Dai, Z., Tian, X. & Jiang, X. Detection of Listeria monocytogenes based on combined aptamers magnetic capture and loop-mediated isothermal amplification. Food Control 85, 443–452 (2018).
-
Liu, X. et al. Rapid and visual detection of Listeria monocytogenes by combining one-pot LAMP-CRISPR/Cas12b with lateral flow assay. Food Microbiol. 135, 104977 (2026).
-
Huang, J. M. et al. Convenient DNA extraction integrated with dual RPA-LFA technology for simultaneous detection of Salmonella and Listeria monocytogenes. Food Biosci. 74, 107973 (2025).
-
Hu, W. J. et al. Dual-signal enhanced lateral flow immunoassay with nanobody-functionalized magnetofluorescent nanoprobes for multiplexed detection of foodborne pathogens. Anal. Chim. Acta 1369, 344360 (2025).
-
ISO. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 2: Enumeration Method. Report No. ISO 11290-2:2017 (2017).
-
Xiao, Y. et al. A rapid and inexpensive nucleic acid detection platform for Listeria monocytogenes based on the CRISPR/Cas12a system. Talanta 259, 124558 (2023).
