Listeria monocytogenes detection assay via aptamer-functionalized magnetic bead enrichment coupled with RPA-CRISPR/Cas12a lateral flow strips

listeria-monocytogenes-detection-assay-via-aptamer-functionalized-magnetic-bead-enrichment-coupled-with-rpa-crispr/cas12a-lateral-flow-strips
Listeria monocytogenes detection assay via aptamer-functionalized magnetic bead enrichment coupled with RPA-CRISPR/Cas12a lateral flow strips

References

  1. Nelson, K. E. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res. 32, 2386–2395 (2004).

    Google Scholar 

  2. Doumith, M., Buchrieser, C., Glaser, P., Jacquet, C. & Martin, P. Differentiation of the major listeria monocytogenes serovars by multiplex PCR. J. Clin. Microbiol. 42, 3819–3822 (2004).

    Google Scholar 

  3. Pamboukian, R., Ferguson, M., Jarvis, K., Grocholl, J. & Burall, L. Multilab validation report for the verification and subtyping of listeria monocytogenes using qPCR. J. Food Prot. 86. https://doi.org/10.1016/j.jfp.2023.100178 (2023).

  4. Fiore, A., Treglia, I., Ciccaglioni, G., Ortoffi, M. F. & Gattuso, A. Application of a loop-mediated isothermal amplification (LAMP) assay for the detection of listeria monocytogenes in Cooked Ham. Foods 12. https://doi.org/10.3390/foods12010193 (2023).

  5. Arunrut, N., Jitrakorn, S., Tondee, B., Saksmerprome, V. & Kiatpathomchai, W. Real-time triplex loop-mediated isothermal amplification (LAMP) using a turbidimeter for detection of shrimp infectious hypodermal and hematopoietic necrosis virus IHHNV. J. Aquat. Anim. Health 36, 205–219 (2024).

    Google Scholar 

  6. Arunrut, N. et al. Development of colorimetric triplex reverse transcription loop-mediated isothermal amplification for rapid and sensitive detection of shrimp yellow head virus (YHV). Aquacult. Int. 33. https://doi.org/10.1007/s10499-024-01703-0 (2025).

  7. Chertow, D. S. Next-generation diagnostics with CRISPR. Science 360, 381–382 (2018).

    Google Scholar 

  8. Yao, Y. et al. Development of small molecule biosensors by coupling the recognition of the bacterial allosteric transcription factor with isothermal strand displacement amplification. Chem. Commun. 54, 4774–4777 (2018).

    Google Scholar 

  9. Zetsche, B. et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell 163, 759–771 (2015).

    Google Scholar 

  10. Chen, J. S. et al. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science 360, 436–439 (2018).

    Google Scholar 

  11. Li, S.-Y. et al. CRISPR-Cas12a-assisted nucleic acid detection. Cell Discov. 4. https://doi.org/10.1038/s41421-018-0028-z (2018).

  12. Chiu, C. Cutting-edge infectious disease diagnostics with CRISPR. Cell Host Microbe 23, 702–704 (2018).

    Google Scholar 

  13. Xiao, Y. et al. A rapid and inexpensive nucleic acid detection platform for Listeria monocytogenes based on the CRISPR/Cas12a system. Talanta 259. https://doi.org/10.1016/j.talanta.2023.124558 (2023).

  14. Shi, C., Ge, Y., Zhao, C. & Ma, C. Aptameric molecular switch for cascade signal amplification. Clin. Chem. 58, 384–390 (2012).

    Google Scholar 

  15. Suh, S. H. et al. Use of DNA aptamer for sandwich type detection of Listeria monocytogenes. Anal. Biochem. 557, 27–33 (2018).

    Google Scholar 

  16. Bruno, J. G. et al. Development of a fluorescent enzyme-linked DNA aptamer-magnetic bead sandwich assay and portable fluorometer for sensitive and rapid listeria detection. J. Fluoresc. 25, 173–183 (2014).

    Google Scholar 

  17. Zhang, L. et al. Rapid and visual detection of Listeria monocytogenes based on nanoparticle cluster catalyzed signal amplification. Biosens. Bioelectron. 86, 1–7 (2016).

    Google Scholar 

  18. Suh, S. H., Dwivedi, H. P., Choi, S. J. & Jaykus, L.-A. Selection and characterization of DNA aptamers specific for Listeria species. Anal. Biochem. 459, 39–45 (2014).

    Google Scholar 

  19. Lee, S.-H. et al. Analytical bioconjugates, aptamers, enable specific quantitative detection of Listeria monocytogenes. Biosens. Bioelectron. 68, 272–280 (2015).

    Google Scholar 

  20. Dunne, M. et al. Reprogramming bacteriophage host range through structure-guided design of chimeric receptor binding proteins. Cell Rep. 29, 1336–1350.e1334 (2019).

    Google Scholar 

  21. Wieczorek, K. & Osek, J. Prevalence, genetic diversity and antimicrobial resistance of Listeria monocytogenes isolated from fresh and smoked fish in Poland. Food Microbiol. 64, 164–171 (2017).

    Google Scholar 

  22. Swaminathan, B. & Gerner-Smidt, P. The epidemiology of human listeriosis. Microbes Infect. 9, 1236–1243 (2007).

    Google Scholar 

  23. Ohk, S. H., Koo, O. K., Sen, T., Yamamoto, C. M. & Bhunia, A. K. Antibody-aptamer functionalized fibre-optic biosensor for specific detection of Listeria monocytogenes from food. J. Appl. Microbiol. 109, 808–817 (2010).

    Google Scholar 

  24. Duan, N. et al. Selection, identification and application of a DNA aptamer against Listeria monocytogenes. Food Control 33, 239–243 (2013).

    Google Scholar 

  25. He, S., Li, H., Gomes, C. L. & Voronine, D. V. Tip-enhanced Raman scattering of DNA aptamers for Listeria monocytogenes. Biointerphases 13. https://doi.org/10.1116/1.5022303 (2018).

  26. Liu, Y. et al. Colorimetric immunoassay for Listeria monocytogenes by using core gold nanoparticles, silver nanoclusters as oxidase mimetics, and aptamer-conjugated magnetic nanoparticles. Microchim. Acta 185. https://doi.org/10.1007/s00604-018-2896-1 (2018)

  27. Cao, X. et al. Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res. 37, 4621–4628 (2009).

    Google Scholar 

  28. Feng, J., Dai, Z., Tian, X. & Jiang, X. Detection of Listeria monocytogenes based on combined aptamers magnetic capture and loop-mediated isothermal amplification. Food Control 85, 443–452 (2018).

    Google Scholar 

  29. Liu, X. et al. Rapid and visual detection of Listeria monocytogenes by combining one-pot LAMP-CRISPR/Cas12b with lateral flow assay. Food Microbiol. 135, 104977 (2026).

    Google Scholar 

  30. Huang, J. M. et al. Convenient DNA extraction integrated with dual RPA-LFA technology for simultaneous detection of Salmonella and Listeria monocytogenes. Food Biosci. 74, 107973 (2025).

  31. Hu, W. J. et al. Dual-signal enhanced lateral flow immunoassay with nanobody-functionalized magnetofluorescent nanoprobes for multiplexed detection of foodborne pathogens. Anal. Chim. Acta 1369, 344360 (2025).

  32. ISO. Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Listeria monocytogenes and of Listeria spp.—Part 2: Enumeration Method. Report No. ISO 11290-2:2017 (2017).

  33. Xiao, Y. et al. A rapid and inexpensive nucleic acid detection platform for Listeria monocytogenes based on the CRISPR/Cas12a system. Talanta 259, 124558 (2023).

    Google Scholar 

Download references