Low intensity vibration as a novel strategy to normalize age-related deficits in T cell proliferation, activation, and function

low-intensity-vibration-as-a-novel-strategy-to-normalize-age-related-deficits-in-t-cell-proliferation,-activation,-and-function
Low intensity vibration as a novel strategy to normalize age-related deficits in T cell proliferation, activation, and function

References

  1. Lee, K. A., Flores, R. R., Jang, I. H., Saathoff, A. & Robbins, P. D. Immune senescence, immunosenescence and aging. Front. Aging 3, 900028. https://doi.org/10.3389/fragi.2022.900028 (2022).

    Google Scholar 

  2. Barbé-Tuana, F., Funchal, G., Schmitz, C. R. R., Maurmann, R. M. & Bauer, M. E. The interplay between immunosenescence and age-related diseases. Semin. Immunopathol. 42, 545–557. https://doi.org/10.1007/s00281-020-00806-z (2020).

    Google Scholar 

  3. Santoro, A., Bientinesi, E. & Monti, D. Immunosenescence and inflammaging in the aging process: Age-related diseases or longevity?. Ageing Res. Rev. 71, 101422. https://doi.org/10.1016/j.arr.2021.101422 (2021).

    Google Scholar 

  4. Li, X. et al. Inflammation and aging: Signaling pathways and intervention therapies. Signal Transduct. Target. Ther. 8, 239. https://doi.org/10.1038/s41392-023-01502-8 (2023).

    Google Scholar 

  5. Ovadya, Y. et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat. Commun. 9, 5435. https://doi.org/10.1038/s41467-018-07825-3 (2018).

    Google Scholar 

  6. Carrasco, E. et al. The role of T cells in age-related diseases. Nat. Rev. Immunol. 22, 97–111. https://doi.org/10.1038/s41577-021-00557-4 (2022).

    Google Scholar 

  7. Mittelbrunn, M. & Kroemer, G. Hallmarks of T cell aging. Nat. Immunol. 22, 687–698. https://doi.org/10.1038/s41590-021-00927-z (2021).

    Google Scholar 

  8. Tu, W. & Rao, S. Mechanisms underlying T cell immunosenescence: Aging and cytomegalovirus infection. Front. Microbiol. 7, 2111. https://doi.org/10.3389/fmicb.2016.02111 (2016).

    Google Scholar 

  9. Weng, N. P., Akbar, A. N. & Goronzy, J. CD28(-) T cells: Their role in the age-associated decline of immune function. Trends Immunol. 30, 306–312. https://doi.org/10.1016/j.it.2009.03.013 (2009).

    Google Scholar 

  10. Esensten, J. H., Helou, Y. A., Chopra, G., Weiss, A. & Bluestone, J. A. CD28 costimulation: From mechanism to therapy. Immunity 44, 973–988. https://doi.org/10.1016/j.immuni.2016.04.020 (2016).

    Google Scholar 

  11. Boussiotis, V. A., Freeman, G. J., Gribben, J. G. & Nadler, L. M. The critical role of CD28 signalling in the prevention of human T-cell anergy. Res. Immunol. 146, 140–149. https://doi.org/10.1016/0923-2494(96)80247-1 (1995).

    Google Scholar 

  12. Mou, D., Espinosa, J., Lo, D. J. & Kirk, A. D. CD28 negative T cells: Is their loss our gain?. Am. J. Transplant. 14, 2460–2466. https://doi.org/10.1111/ajt.12937 (2014).

    Google Scholar 

  13. Coleman, M. J., Zimmerly, K. M. & Yang, X. O. Accumulation of CD28(null) senescent T-cells is associated with poorer outcomes in COVID19 patients. Biomolecules https://doi.org/10.3390/biom11101425 (2021).

    Google Scholar 

  14. Macaulay, R., Akbar, A. N. & Henson, S. M. The role of the T cell in age-related inflammation. Age 35, 563–572. https://doi.org/10.1007/s11357-012-9381-2 (2013).

    Google Scholar 

  15. Pedersen, B. K. & Hoffman-Goetz, L. Exercise and the immune system: Regulation, integration, and adaptation. Physiol. Rev. 80, 1055–1081 (2000).

    Google Scholar 

  16. Gleeson, M. et al. The anti-inflammatory effects of exercise: Mechanisms and implications for the prevention and treatment of disease. Nat. Rev. Immunol. 11, 607–615. https://doi.org/10.1038/nri3041 (2011).

    Google Scholar 

  17. Wang, J., Liu, S., Li, G. & Xiao, J. Exercise regulates the immune system. Adv. Exp. Med. Biol. 1228, 395–408. https://doi.org/10.1007/978-981-15-1792-1_27 (2020).

    Google Scholar 

  18. Wang, Q. & Zhou, W. Roles and molecular mechanisms of physical exercise in cancer prevention and treatment. J. Sport Health Sci. 10, 201–210. https://doi.org/10.1016/j.jshs.2020.07.008 (2021).

    Google Scholar 

  19. da Silveira, M. P. et al. Physical exercise as a tool to help the immune system against COVID-19: An integrative review of the current literature. Clin. Exp. Med. 21, 15–28. https://doi.org/10.1007/s10238-020-00650-3 (2021).

    Google Scholar 

  20. Donovan, T., Bain, A. L., Tu, W., Pyne, D. B. & Rao, S. Influence of exercise on exhausted and senescent T cells: A systematic review. Front. Physiol. 12, 668327. https://doi.org/10.3389/fphys.2021.668327 (2021).

    Google Scholar 

  21. de Carvalho-Costa, T. M. et al. Immunophenotypic analysis of T lymphocytes and cytokine production in elderly practicing physical activities and its relationship with quality of life and depression. Oxid. Med. Cell. Longev. 2022, 7985596. https://doi.org/10.1155/2022/7985596 (2022).

    Google Scholar 

  22. Krüger, K., Mooren, F. C. & Pilat, C. The immunomodulatory effects of physical activity. Curr. Pharm. Des. 22, 3730–3748. https://doi.org/10.2174/1381612822666160322145107 (2016).

    Google Scholar 

  23. Walzik, D. et al. Impact of exercise on markers of B cell-related immunity: A systematic review. J. Sport Health Sci. https://doi.org/10.1016/j.jshs.2023.10.002 (2023).

    Google Scholar 

  24. Theall, B. et al. Impact of acute exercise on peripheral blood mononuclear cells nutrient sensing and mitochondrial oxidative capacity in healthy young adults. Physiol. Rep. 9, e15147. https://doi.org/10.14814/phy2.15147 (2021).

    Google Scholar 

  25. de Almeida-Neto, P. F. et al. Influence of age and fitness level on immune responses of T and NK cells in healthy physically active subjects after strenuous aerobic exercise: A cross-sectional study. Front. Immunol. 14, 1252506. https://doi.org/10.3389/fimmu.2023.1252506 (2023).

    Google Scholar 

  26. Campbell, J. P. et al. Acute exercise mobilises CD8+ T lymphocytes exhibiting an effector-memory phenotype. Brain Behav. Immunol. 23, 767–775. https://doi.org/10.1016/j.bbi.2009.02.011 (2009).

    Google Scholar 

  27. Siedlik, J. A. et al. T cell activation and proliferation following acute exercise in human subjects is altered by storage conditions and mitogen selection. J. Immunol. Methods 446, 7–14. https://doi.org/10.1016/j.jim.2017.03.017 (2017).

    Google Scholar 

  28. Mazur, M. et al. Effects of controlled physical activity on immune cell phenotype in peripheral blood in prehypertension—Studies in preclinical model and randomised crossover study. J. Physiol. Pharmacol. https://doi.org/10.26402/jpp.2018.6.12 (2018).

    Google Scholar 

  29. Woods, J. A. et al. Effects of 6 months of moderate aerobic exercise training on immune function in the elderly. Mech. Ageing Dev. 109, 1–19. https://doi.org/10.1016/S0047-6374(99)00014-7 (1999).

    Google Scholar 

  30. Lowder, T., Padgett, D. A. & Woods, J. A. Moderate exercise protects mice from death due to influenza virus. Brain Behav. Immun. 19, 377–380. https://doi.org/10.1016/j.bbi.2005.04.002 (2005).

    Google Scholar 

  31. Jones, H. H., Priest, J. D., Hayes, W. C., Tichenor, C. C. & Nagel, D. A. Humeral hypertrophy in response to exercise. J. Bone Joint Surg. 59, 204–208 (1977).

    Google Scholar 

  32. Blanks, A. M. et al. Whole body vibration elicits differential immune and metabolic responses in obese and normal weight individuals. Brain Behav Immun Health 1, 100011. https://doi.org/10.1016/j.bbih.2019.100011 (2020).

    Google Scholar 

  33. Pagnotti, G. M. et al. Combating osteoporosis and obesity with exercise: Leveraging cell mechanosensitivity. Nat. Rev. Endocrinol. 15, 339–355. https://doi.org/10.1038/s41574-019-0170-1 (2019).

    Google Scholar 

  34. Rubin, C. T. et al. Adipogenesis is inhibited by brief, daily exposure to high-frequency, extremely low-magnitude mechanical signals. Proc. Natl. Acad. Sci. U. S. A. 104, 17879–17884. https://doi.org/10.1073/pnas.0708467104 (2007).

    Google Scholar 

  35. Di, X. et al. Cellular mechanotransduction in health and diseases: From molecular mechanism to therapeutic targets. Signal Transduct. Target. Ther. 8, 282. https://doi.org/10.1038/s41392-023-01501-9 (2023).

    Google Scholar 

  36. Yano, S., Komine, M., Fujimoto, M., Okochi, H. & Tamaki, K. Activation of Akt by mechanical stretching in human epidermal keratinocytes. Exp. Dermatol. 15, 356–361. https://doi.org/10.1111/j.0906-6705.2006.00425.x (2006).

    Google Scholar 

  37. Fritton, S. P., McLeod, K. J. & Rubin, C. T. Quantifying the strain history of bone: Spatial uniformity and self-similarity of low-magnitude strains. J. Biomech. 33, 317–325 (2000).

    Google Scholar 

  38. Ozcivici, E. et al. Mechanical signals as anabolic agents in bone. Nat. Rev. Rheumatol. 6, 50–59 (2010).

    Google Scholar 

  39. Uzer, G., Pongkitwitoon, S., Ete Chan, M. & Judex, S. Vibration induced osteogenic commitment of mesenchymal stem cells is enhanced by cytoskeletal remodeling but not fluid shear. J. Biomech. 46, 2296–2302. https://doi.org/10.1016/j.jbiomech.2013.06.008 (2013).

    Google Scholar 

  40. Uzer, G. et al. Separating fluid shear stress from acceleration during vibrations in vitro: Identification of mechanical signals modulating the cellular response. Cell. Mol. Bioeng. 5, 266–276 (2012).

    Google Scholar 

  41. Mousset, C. M. et al. Comprehensive phenotyping of T cells using flow cytometry. Cytometry A 95, 647–654. https://doi.org/10.1002/cyto.a.23724 (2019).

    Google Scholar 

  42. Wherry, E. J. & Kurachi, M. Molecular and cellular insights into T cell exhaustion. Nat. Rev. Immunol. 15, 486–499. https://doi.org/10.1038/nri3862 (2015).

    Google Scholar 

  43. Xie, L., Rubin, C. & Judex, S. Enhancement of the adolescent murine musculoskeletal system using low-level mechanical vibrations. J. Appl. Physiol. 104, 1056–1062 (2008).

    Google Scholar 

  44. Patel, V. S. et al. Incorporating refractory period in mechanical stimulation mitigates obesity-induced adipose tissue dysfunction in adult mice. Obesity https://doi.org/10.1002/oby.21958 (2017).

    Google Scholar 

  45. Sen, B. et al. Mechanical signal influence on mesenchymal stem cell fate is enhanced by incorporation of refractory periods into the loading regimen. J. Biomech. 44, 593–599. https://doi.org/10.1016/j.jbiomech.2010.11.022 (2011).

    Google Scholar 

  46. Fry, R. W., Morton, A. R., Crawford, G. P. & Keast, D. Cell numbers and in vitro responses of leucocytes and lymphocyte subpopulations following maximal exercise and interval training sessions of different intensities. Eur. J. Appl. Physiol. Occup. Physiol. 64, 218–227. https://doi.org/10.1007/bf00626284 (1992).

    Google Scholar 

  47. De Belly, H., Paluch, E. K. & Chalut, K. J. Interplay between mechanics and signalling in regulating cell fate. Nat. Rev. Mol. Cell Biol. 23, 465–480. https://doi.org/10.1038/s41580-022-00472-z (2022).

    Google Scholar 

  48. Green, K. J., Rowbottom, D. G. & Mackinnon, L. T. Acute exercise and T-lymphocyte expression of the early activation marker CD69. Med. Sci. Sports Exerc. 35, 582–588. https://doi.org/10.1249/01.Mss.0000058361.82096.26 (2003).

    Google Scholar 

  49. Uzeloto, J. S. et al. Effect of physical training on cytokine expression in CD4+ T lymphocytes in subjects with stable COPD. Ther. Adv. Respir. Dis. 16, 17534666221091180. https://doi.org/10.1177/17534666221091179 (2022).

    Google Scholar 

  50. Shaw, D. M., Merien, F., Braakhuis, A. & Dulson, D. T-cells and their cytokine production: The anti-inflammatory and immunosuppressive effects of strenuous exercise. Cytokine 104, 136–142. https://doi.org/10.1016/j.cyto.2017.10.001 (2018).

    Google Scholar 

  51. Mooren, F. C., Lechtermann, A., Fromme, A., Thorwesten, L. & Völker, K. Alterations in intracellular calcium signaling of lymphocytes after exhaustive exercise. Med. Sci. Sports Exerc. 33, 242–248. https://doi.org/10.1097/00005768-200102000-00012 (2001).

    Google Scholar 

  52. Kane, L. P., Andres, P. G., Howland, K. C., Abbas, A. K. & Weiss, A. Akt provides the CD28 costimulatory signal for up-regulation of IL-2 and IFN-gamma but not TH2 cytokines. Nat. Immunol. 2, 37–44. https://doi.org/10.1038/83144 (2001).

    Google Scholar 

  53. Yi, J. S., Cox, M. A. & Zajac, A. J. T-cell exhaustion: Characteristics, causes and conversion. Immunology 129, 474–481. https://doi.org/10.1111/j.1365-2567.2010.03255.x (2010).

    Google Scholar 

  54. Blank, C. U. et al. Defining ‘T cell exhaustion’. Nat. Rev. Immunol. 19, 665–674. https://doi.org/10.1038/s41577-019-0221-9 (2019).

    Google Scholar 

  55. Kasakovski, D., Xu, L. & Li, Y. T cell senescence and CAR-T cell exhaustion in hematological malignancies. J. Hematol. Oncol. 11, 91. https://doi.org/10.1186/s13045-018-0629-x (2018).

    Google Scholar 

  56. Zhang, Z. et al. T cell dysfunction and exhaustion in cancer. Front. Cell Dev. Biol. 8, 17. https://doi.org/10.3389/fcell.2020.00017 (2020).

    Google Scholar 

  57. Dolina, J. S., Van Braeckel-Budimir, N., Thomas, G. D. & Salek-Ardakani, S. CD8(+) T cell exhaustion in cancer. Front. Immunol. 12, 715234. https://doi.org/10.3389/fimmu.2021.715234 (2021).

    Google Scholar 

  58. Krueger, J., Rudd, C. E. & Taylor, A. Seminars in Immunology. 101295 (Elsevier).

  59. Taylor, A. et al. Glycogen synthase kinase 3 inactivation drives T-bet-mediated downregulation of co-receptor PD-1 to enhance CD8+ cytolytic T cell responses. Immunity 44, 274–286 (2016).

    Google Scholar 

  60. Rudd, C. E., Chanthong, K. & Taylor, A. Small molecule inhibition of GSK-3 specifically inhibits the transcription of inhibitory co-receptor LAG-3 for enhanced anti-tumor immunity. Cell Rep. 30, 2075-2082. e2074 (2020).

    Google Scholar 

  61. Taylor, A., Rothstein, D. & Rudd, C. E. Small-molecule inhibition of PD-1 transcription is an effective alternative to antibody blockade in cancer therapy. Cancer Res. 78, 706–717 (2018).

    Google Scholar 

  62. Velden, JLJvd. et al. Myogenic differentiation during regrowth of atrophied skeletal muscle is associated with inactivation of GSK-3β. Am. J. Physiol.-Cell Physiol. 292, C1636–C1644. https://doi.org/10.1152/ajpcell.00504.2006 (2007).

    Google Scholar 

  63. Sen, B. et al. Mechanically induced focal adhesion assembly amplifies anti-adipogenic pathways in mesenchymal stem cells. Stem Cells 29, 1829–1836. https://doi.org/10.1002/stem.732 (2011).

    Google Scholar 

  64. Newberg, J. et al. Isolated nuclei stiffen in response to low intensity vibration. J. Biomech. 111, 110012 (2020).

    Google Scholar 

  65. Appleman, L. J., van Puijenbroek, A. A., Shu, K. M., Nadler, L. M. & Boussiotis, V. A. CD28 costimulation mediates down-regulation of p27kip1 and cell cycle progression by activation of the PI3K/PKB signaling pathway in primary human T cells. J. Immunol. 168, 2729–2736. https://doi.org/10.4049/jimmunol.168.6.2729 (2002).

    Google Scholar 

  66. Bhavsar, S. K., Merches, K., Bobbala, D. & Lang, F. AKT/SGK-sensitive phosphorylation of GSK3 in the regulation of L-selectin and perforin expression as well as activation induced cell death of T-lymphocytes. Biochem. Biophys. Res. Commun. 425, 6–12. https://doi.org/10.1016/j.bbrc.2012.07.030 (2012).

    Google Scholar 

  67. Zhu, C., Chen, W., Lou, J., Rittase, W. & Li, K. Mechanosensing through immunoreceptors. Nat. Immunol. 20, 1269–1278. https://doi.org/10.1038/s41590-019-0491-1 (2019).

    Google Scholar 

  68. Wang, J. H. T cell receptors, mechanosensors, catch bonds and immunotherapy. Prog. Biophys. Mol. Biol. 153, 23–27. https://doi.org/10.1016/j.pbiomolbio.2020.01.001 (2020).

    Google Scholar 

  69. Liu, B., Kolawole, E. M. & Evavold, B. D. Mechanobiology of T cell activation: To catch a bond. Annu. Rev. Cell Dev. Biol. 37, 65–87. https://doi.org/10.1146/annurev-cellbio-120219-055100 (2021).

    Google Scholar 

  70. Chan, M. E. et al. Low intensity mechanical signals promote proliferation in a cell-specific manner: Tailoring a non-drug strategy to enhance biomanufacturing yields. bioRxiv https://doi.org/10.1101/2023.07.05.547864 (2023).

    Google Scholar 

  71. Trickett, A. & Kwan, Y. L. T cell stimulation and expansion using anti-CD3/CD28 beads. J. Immunol. Methods 275, 251–255. https://doi.org/10.1016/s0022-1759(03)00010-3 (2003).

    Google Scholar 

  72. Fearon, D. T. The expansion and maintenance of antigen-selected CD8(+) T cell clones. Adv. Immunol. 96, 103–139. https://doi.org/10.1016/s0065-2776(07)96003-4 (2007).

    Google Scholar 

Download references