LowLoad-qPCR as a novel clinical strategy for detecting low-load bacteremia

lowload-qpcr-as-a-novel-clinical-strategy-for-detecting-low-load-bacteremia
LowLoad-qPCR as a novel clinical strategy for detecting low-load bacteremia

Data availability

All data from this study are available within the article. Additional data that support the findings of this study are available from the corresponding authors on reasonable request.

References

  1. Huang, M., Cai, S. & Su, J. The pathogenesis of sepsis and potential therapeutic targets. Int. J. Mol. Sci. 20 (21), 5376 (2019).

    Google Scholar 

  2. Kumar, A. et al. Duration of hypotension before initiation of effective antimicrobial therapy is the critical determinant of survival in human septic shock. Crit. Care Med. 34, 1589–1596 (2006).

    Google Scholar 

  3. Alizadeh, M. et al. Rapid separation of bacteria from blood—Chemical aspects. Colloids Surf. B Biointerfaces. 154, 365–372 (2017).

    Google Scholar 

  4. Miller, J. M. et al. A guide to utilization of the microbiology laboratory for diagnosis of infectious diseases: 2018 update by the infectious diseases society of America and the American society for microbiology. Clin. Infect. Dis. 67 (6), e1–e94 (2018).

    Google Scholar 

  5. Nguyen, M. H. et al. Performance of the T2Bacteria panel for diagnosing bloodstream infections: A diagnostic accuracy study. Ann. Intern. Med. 170 (12), 845–852 (2019).

    Google Scholar 

  6. Vrettou, C. S. et al. Accuracy of T2 magnetic resonance assays as point-of-care methods in the intensive care unit. J. Hosp. Infect. 139, 240–248 (2023).

    Google Scholar 

  7. Paggi, R. et al. Accuracy and impact on patient management of new tools for diagnosis of sepsis: Experience with the T2 magnetic resonance bacteria panel. Pathogens 10 (9), 1132 (2021).

    Google Scholar 

  8. Samuel, L. Direct-from-Blood detection of pathogens: A review of technology and challenges. J. Clin. Microbiol. 61 (7), e00231–e00221 (2023).

    Google Scholar 

  9. Khine, A. A. et al. Evaluating the analytical sensitivity of Qvella’s FAST(TM) ID system for early detection and identification of bloodstream infection in whole blood 27th ECCMID. Vienna, Austria, April 22–25 (2017).

  10. Vutukuru, M. R. et al. A rapid, highly sensitive and culture-free detection of pathogens from blood by positive enrichment. J. Microbiol. Methods. 131, 105–109 (2016).

    Google Scholar 

  11. Kustanovich, A. et al. Life and death of Circulating cell-free DNA. Cancer Biol. Ther. 20 (8), 1057–1067 (2019).

    Google Scholar 

  12. Kim, T. H. et al. Blood culture-free ultra-rapid antimicrobial susceptibility testing. Nature 632 (8026), 893–902 (2024).

    Google Scholar 

  13. Vutukuru, M. R. & Mitra, N. Theoretical assessment data for the binding of sepsis causing pathogens to ApoH beads. Data Brief. 13, 18–21 (2017).

    Google Scholar 

  14. Buchanan, C. M. et al. Rapid separation of very low concentrations of bacteria from blood. J. Microbiol. Methods. 139, 48–53 (2017).

    Google Scholar 

  15. Stroun, M. et al. Isolation and characterization of DNA from the plasma of cancer patients. Eur. J. Cancer Clin. Oncol. 23 (6), 707–712 (1987).

    Google Scholar 

  16. Vutukuru, M. R. et al. A rapid, highly sensitive and culture-free detection of pathogens from blood by positive enrichment. J. Microbiol. Methods. 127, 59–61 (2016).

    Google Scholar 

  17. Silkie, S. S., Tolcher, M. P. & Nelson, K. L. J. Reagent decontamination to eliminate false-positives in Escherichia coli qPCR. Microbiol. Methods. 72 (3), 275e282 (2008).

    Google Scholar 

  18. Lievens, A., Van Aelst, S., Van den Bulcke, M. & Goetghebeur, E. Simulation of between repeat variability in real time PCR reactions. PLoS ONE. 7 (11), e47112 (2012).

    Google Scholar 

  19. Bizzini, A. & Greub, G. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry, a revolution in clinical microbial identification. Clin. Microbiol. Infect. 16 (11), 1614–1619 (2010).

    Google Scholar 

Download references

Acknowledgements

The authors thank the 15 volunteers and the technicians for providing the blood samples and performing the extractions, respectively.

Funding

This study has been funded by Instituto de Salud Carlos III (ISCIII) through the projects PI23/01760 and co-funded by the European Union. PGE is supported by the Subprograme PFIS, Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, Spain (FI24/00301). JMOR is supported by the Subprograme Miguel Servet, Instituto de Salud Carlos III, Subdirección General de Redes y Centros de Investigación Cooperativa, Ministerio de Ciencia, Innovación y Universidades, Spain (CP24/00137). GMG has received funding from the Andalusia Government in the grants for human resources reinforcement in research activity (B-0006-2019).

Author information

Authors and Affiliations

  1. Clinical Unit of Infectious Diseases, Microbiology and Parasitology, University Hospital Virgen del Rocío, Av. Manuel Siurot s/n 41013, Seville, Spain

    Paula Gómez Estévez, José Miguel Cisneros, José Antonio Lepe, Guillermo Martín-Gutiérrez & José Manuel Ortiz de la Rosa

  2. Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain

    Paula Gómez Estévez, José Miguel Cisneros, José Antonio Lepe, Guillermo Martín-Gutiérrez & José Manuel Ortiz de la Rosa

  3. Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Madrid, Spain

    José Miguel Cisneros, José Antonio Lepe, Guillermo Martín-Gutiérrez & José Manuel Ortiz de la Rosa

  4. Department of Medicine, Faculty of Medicine, University of Seville, Seville, Spain

    José Miguel Cisneros

  5. Department of Microbiology, Faculty of Medicine, University of Seville, Seville, Spain

    José Antonio Lepe

  6. Department of Health Sciences, Loyola Andalucía University, Sevilla, Spain

    Guillermo Martín-Gutiérrez

Authors

  1. Paula Gómez Estévez
  2. José Miguel Cisneros
  3. José Antonio Lepe
  4. Guillermo Martín-Gutiérrez
  5. José Manuel Ortiz de la Rosa

Contributions

PGE: Formal analysis, Investigation, Methodology, Writing – original draft; GMG: Conceptualization, Formal analysis, Generation of figures and schemes, Funding acquisition, Writing – review and original draft; JMC: Resources, Supervision, Writing – review and editing; JAL: Resources, Writing – review and editing; JMOR: Conceptualization, Formal analysis, Investigation, Methodology, Supervision, Validation, Funding acquisition, Writing – review and editing. All authors discussed the results and edited the manuscript before submission.

Corresponding authors

Correspondence to Guillermo Martín-Gutiérrez or José Manuel Ortiz de la Rosa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez Estévez, P., Cisneros, J.M., Lepe, J.A. et al. LowLoad-qPCR as a novel clinical strategy for detecting low-load bacteremia. Sci Rep (2026). https://doi.org/10.1038/s41598-025-34230-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-34230-w

Keywords