References
-
Ahmad, A. et al. Intracellular synthesis of gold nanoparticles by a novel alkalotolerant actinomycete,Rhodococcusspecies. Nanotechnology 14, 824–828 (2003).
-
Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int. J. Cancer. 118, 3030–3044 (2006).
-
Lun, Z. R. et al. Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect. Dis. 5, 31–41 (2005).
-
Sripa, B. et al. Opisthorchiasis and Opisthorchis-associated cholangiocarcinoma in Thailand and Laos. Acta Trop. 120 (Suppl 1), S158–168 (2011).
-
Sithithaworn, P., Yongvanit, P., Duenngai, K., Kiatsopit, N. & Pairojkul, C. Roles of liver fluke infection as risk factor for cholangiocarcinoma. J. Hepato-Biliary-Pancreat Sci. 21, 301–308 (2014).
-
Qian, M. B. et al. Accuracy of the Kato-Katz method and formalin-ether concentration technique for the diagnosis of clonorchis sinensis, and implication for assessing drug efficacy. Parasit. Vectors. 6, 314 (2013).
-
Johansen, M. V., Sithithaworn, P., Bergquist, R. & Utzinger, J. Towards improved diagnosis of zoonotic trematode infections in Southeast Asia. Adv. Parasitol. 73, 171–195 (2010).
-
Wongratanacheewin, S., Sermswan, R. W. & Sirisinha, S. Immunology and molecular biology of opisthorchis Viverrini infection. Acta Trop. 88, 195–207 (2003).
-
Haswell-Elkins, M. R. et al. Immune responsiveness and parasite-specific antibody levels in human hepatobiliary disease associated with opisthorchis Viverrini infection. Clin. Exp. Immunol. 84, 213–218 (1991).
-
Bettazzi, F., Marrazza, G., Minunni, M., Palchetti, I. & Scarano, S. Chapter one – biosensors and related bioanalytical tools. In Comprehensive Analytical Chemistry (eds Palchetti, I., Hansen, P.-D. & Barceló, D.) 77 1–33 (Elsevier, 2017).
-
Menon, S., Mathew, M. R., Sam, S., Keerthi, K. & Kumar, K. G. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. J. Electroanal. Chem. 878, 114596 (2020).
-
Aye, N. N. S. et al. Functionalized graphene oxide–antibody conjugate-based electrochemical immunosensors to detect opisthorchis Viverrini antigen in urine. Mater. Adv. https://doi.org/10.1039/D3MA01075A (2024).
-
Cui, F., Yue, Y., Zhang, Y., Zhang, Z. & Zhou, H. S. Advancing biosensors with machine learning. ACS Sens. https://doi.org/10.1021/acssensors.0c01424 (2020).
-
Ramprasad, R., Batra, R., Pilania, G., Mannodi-Kanakkithodi, A. & Kim, C. Machine learning in materials informatics: recent applications and prospects. Npj Comput. Mater. 3, 1–13 (2017).
-
Ali, S. et al. Disposable all-printed electronic biosensor for instantaneous detection and classification of pathogens. Sci. Rep. 8, 5920 (2018).
-
Zeng, Z. et al. Nonintrusive monitoring of mental fatigue status using epidermal electronic systems and Machine-Learning algorithms. ACS Sens. 5, 1305–1313 (2020).
-
Uwaya, G. E., Sagrado, S. & Bisetty, K. Smart electrochemical sensing of xylitol using a combined machine learning and simulation approach. Talanta Open. 6, 100144 (2022).
-
Baghdadi, N. A. et al. Advanced machine learning techniques for cardiovascular disease early detection and diagnosis. J. Big Data. 10, 144 (2023).
-
Hastie, T., Rosset, S., Zhu, J. & Zou, H. Multi-class adaboost. Stat. Interface. 2, 349–360 (2009).
-
Kumari, S., Kumar, D. & Mittal, M. An ensemble approach for classification and prediction of diabetes mellitus using soft voting classifier. Int. J. Cogn. Comput. Eng. 2, 40–46 (2021).
-
Rainio, O., Teuho, J. & Klén, R. Evaluation metrics and statistical tests for machine learning. Sci. Rep. 14, 6086 (2024).
-
Srithai, C., Chuangchaiya, S., Jaichuang, S. & Idris, Z. M. Prevalence of opisthorchis Viverrini and its associated risk factors in the phon Sawan district of Nakhon phanom Province, Thailand. Iran. J. Parasitol. 16, 474–482 (2021).
-
Thaewnongiew, K. et al. Prevalence and risk factors for opisthorchis Viverrini infections in upper Northeast Thailand. Asian Pac. J. Cancer Prev. APJCP. 15, 6609–6612 (2014).
-
Nirmalraj, S. et al. Permutation feature importance-based fusion techniques for diabetes prediction. Soft Comput. https://doi.org/10.1007/s00500-023-08041-y (2023).
-
Chawla, N. V., Bowyer, K. W., Hall, L. O. & Kegelmeyer, W. P. SMOTE: synthetic minority Over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002).
-
Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L. & Muller, P. A. Deep learning for time series classification: a review. Data Min. Knowl. Discov. 33, 917–963 (2019).
-
Heyrovský, J. The development of Polarographic analysis. Analyst 81, 189–192 (1956).
-
Wang, C. et al. Machine learning-assisted cell-imprinted electrochemical impedance sensor for qualitative and quantitative analysis of three bacteria. Sens. Actuators B Chem. 384, 133672 (2023).
-
Worasith, C. et al. Comparing the performance of urine and copro-antigen detection in evaluating opisthorchis Viverrini infection in communities with different transmission levels in Northeast Thailand. PLoS Negl. Trop. Dis. 13, e0007186 (2019).
-
Worasith, C. et al. Effects of day-to-day variation of opisthorchis Viverrini antigen in urine on the accuracy of diagnosing opisthorchiasis in Northeast Thailand. PLOS ONE. 17, e0271553 (2022).
-
Thomas, L. B., Mastorides, S. M., Viswanadhan, N. A., Jakey, C. E. & Borkowski, A. A. Artificial intelligence: review of current and future applications in medicine. Fed. Pract. Health Care Prof. VA. DoD PHS. 38, 527–538 (2021).
-
Christodoulou, E. et al. A systematic review shows no performance benefit of machine learning over logistic regression for clinical prediction models. J. Clin. Epidemiol. 110, 12–22 (2019).
-
van der Ploeg, T., Austin, P. C. & Steyerberg, E. W. Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med. Res. Methodol. 14, 137 (2014).
-
Jiang, Y. et al. Cardiovascular disease prediction by machine learning algorithms based on cytokines in Kazakhs of China. Clin. Epidemiol. 13, 417–428 (2021).
-
Alsaleh, M. et al. Characterisation of the urinary metabolic profile of liver Fluke-Associated cholangiocarcinoma. J. Clin. Exp. Hepatol. 9, 657–675 (2019).
-
Sripa, B. et al. Toward integrated opisthorchiasis control in Northeast thailand: the Lawa project. Acta Trop. 141, 361–367 (2015).
-
Worasith, C. et al. Advances in the diagnosis of human opisthorchiasis: development of opisthorchis Viverrini antigen detection in urine. PLoS Negl. Trop. Dis. 9, e0004157 (2015).
-
Maitongngam, K., Tipayamongkholgul, M. & Kosaisavee, V. Diagnostic accuracy of opisthorchis Viverrini antigen methods for human opisthorchiasis: systematic review and Meta-analysis. Thai J. Public. Health. 53, 465–481 (2023).
-
Khuntikeo, N. et al. Current perspectives on opisthorchiasis control and cholangiocarcinoma detection in Southeast Asia. Front. Med. 5, (2018).
-
Panch, T., Szolovits, P. & Atun, R. Artificial intelligence, machine learning and health systems. J. Glob Health. 8, 020303 (2018).
