Maltose metabolism in serum free CHO culture involves lysosomal acid α-glucosidase

maltose-metabolism-in-serum-free-cho-culture-involves-lysosomal-acid-α-glucosidase
Maltose metabolism in serum free CHO culture involves lysosomal acid α-glucosidase

Data availability

All data supporting the findings of this study are available within the paper or upon reasonable request from the corresponding author (S.K.N.).

References

  1. Altamirano, C., Paredes, C., Cairó, J. J. & Gòdia, F. Improvement of CHO cell culture medium formulation: simultaneous substitution of glucose and glutamine. Biotechnol. Prog. 16, 69–75 (2000).

    Google Scholar 

  2. Leong, D. S. Z. et al. Evaluation and use of disaccharides as energy source in protein-free mammalian cell cultures. Sci. Rep. 7, 45216 (2017).

    Google Scholar 

  3. Leong, D. S. Z. et al. Application of maltose as energy source in protein-free CHO-K1 culture to improve the production of recombinant monoclonal antibody. Sci. Rep. 8, 4037 (2018).

    Google Scholar 

  4. Chiba, S. Molecular mechanism in alpha-glucosidase and glucoamylase. Biosci. Biotechnol. Biochem. 61, 1233–1239 (1997).

    Google Scholar 

  5. Quezada-Calvillo, R., Simsek, M., Juarez, J. & Nichols, B. Protein synthesis controls the activity of Maltase-Glucoamylase and Sucrase-Isomaltase in non-intestinal tissues. FASEB J. 29(596), 18 (2015).

    Google Scholar 

  6. Selvarasu, S. et al. Combined in silico modeling and metabolomics analysis to characterize fed-batch CHO cell culture. Biotechnol. Bioeng. 109, 1415–1429 (2012).

    Google Scholar 

  7. Xu, S. et al. von Hippel-Lindau protein maintains metabolic balance to regulate the survival of naive B lymphocytes. Iscience. 17, 379–392 (2019).

    Google Scholar 

  8. Millard, P., Letisse, F., Sokol, S. & Portais, J.-C. IsoCor: correcting MS data in isotope labeling experiments. Bioinformatics 28, 1294–1296 (2012).

    Google Scholar 

  9. Scheffler, O. & Ahearn, G. A. Functional characterization of a novel disaccharide transporter in lobster hepatopancreas. J. Comp. Physiol. B 187, 563–573 (2017).

    Google Scholar 

  10. Meyer, H., Vitavska, O. & Wieczorek, H. Identification of an animal sucrose transporter. J. Cell Sci. 124, 1984–1991 (2011).

    Google Scholar 

  11. Clissold, S. P. & Edwards, C. Acarbose. Drugs 35, 214–243 (1988).

    Google Scholar 

  12. Saul R, Ghidoni J J, Molyneuxt R J, Elbein A D 1985. Castanospermine inhibits a-glucosidase activities and alters glycogen distribution in animals. 5

  13. Saul, R., Chambers, J. P., Molyneux, R. J. & Elbein, A. D. Castanospermine, a tetrahydroxylated alkaloid that inhibits beta-glucosidase and beta-glucocerebrosidase. Arch. Biochem. Biophys. 221, 593–597 (1983).

    Google Scholar 

  14. Hermans, M. M., Wisselaar, H. A., Kroos, M. A., Oostra, B. A. & Reuser, A. J. Human lysosomal alpha-glucosidase: functional characterization of the glycosylation sites. Biochem. J. 289, 681–686 (1993).

    Google Scholar 

  15. Moreland, R. J. et al. Lysosomal acid α-glucosidase consists of four different peptides processed from a single chain precursor. J. Biol. Chem. 280, 6780–6791 (2005).

    Google Scholar 

  16. Cooper, G. M. in Cell Mol. Approach 2nd Ed. (Sinauer Associates, 2000). at <https://www.ncbi.nlm.nih.gov/books/NBK9847/>

  17. Choa, J. B. D. et al. Effects of various disaccharide adaptations on recombinant IgA1 production in CHO-K1 suspension cells. Cytotechnology 75, 219–229 (2023).

    Google Scholar 

Download references

Acknowledgements

This project was supported by the Bioprocessing Technology Institute and Biomedical Research Council of the Agency for Science, Technology and Research (A*STAR), Singapore. Y.S.H and S.K.N. acknowledge the funding support by A*STAR under its RIE2025 Human Health and Potential (HHP) Industry Alignment Fund Pre-Positioning (IAF-PP) Grant number H25J6a0034.

Author information

Authors and Affiliations

  1. Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, 138668, Singapore, Singapore

    Tessa Rui Min Tan, Lian Yee Yip, Janice Gek Ling Tan, Dawn Sow Zong Leong, Yan Ni Annie Soh, Shi Ya Mak, Ying Swan Ho & Say Kong Ng

  2. Food, Chemical and Biotechnology Cluster, Singapore Institute of Technology (SIT), Singapore, Singapore

    Ying Swan Ho & Say Kong Ng

  3. Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore

    Say Kong Ng

  4. Bezos Centre for Sustainable Protein , National University of Singapore, Singapore, Singapore

    Say Kong Ng

Authors

  1. Tessa Rui Min Tan
  2. Lian Yee Yip
  3. Janice Gek Ling Tan
  4. Dawn Sow Zong Leong
  5. Yan Ni Annie Soh
  6. Shi Ya Mak
  7. Ying Swan Ho
  8. Say Kong Ng

Contributions

Y.L.Y., Y.N.A.S, S.Y.M. and Y.S.H. measured the incorporation of 13C into intracellular downstream metabolites by mass spectrometry and isotopic carbon tracing. T.R.M.T., D.S.Z.L and J.G.L.T designed and conducted all the other experiments. S.K.N. conceived the experiments. All authors reviewed the manuscript.

Corresponding author

Correspondence to Say Kong Ng.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, T.R.M., Yip, L.Y., Tan, J.G.L. et al. Maltose metabolism in serum free CHO culture involves lysosomal acid α-glucosidase. Sci Rep (2025). https://doi.org/10.1038/s41598-025-30901-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-30901-w

Keywords