Mass spectrometry-based top-down proteomics for proteoform profiling of protein coronas

mass-spectrometry-based-top-down-proteomics-for-proteoform-profiling-of-protein-coronas
Mass spectrometry-based top-down proteomics for proteoform profiling of protein coronas

References

  1. Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).

    Google Scholar 

  2. Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).

    Google Scholar 

  3. Dawson, K. A. & Yan, Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol. 16, 229–242 (2021).

    Google Scholar 

  4. Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    Google Scholar 

  5. Pelaz, B. et al. Diverse applications of nanomedicine. ACS Nano 11, 2313–2381 (2017).

    Google Scholar 

  6. Li, S., Cortez-Jugo, C., Ju, Y. & Caruso, F. Approaching two decades: biomolecular coronas and bio–nano interactions. ACS Nano 18, 33257–33263 (2024).

    Google Scholar 

  7. Hadjidemetriou, M., Al-Ahmady, Z., Buggio, M., Swift, J. & Kostarelos, K. A novel scavenging tool for cancer biomarker discovery based on the blood-circulating nanoparticle protein corona. Biomaterials 188, 118–129 (2019).

    Google Scholar 

  8. Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772–781 (2013).

    Google Scholar 

  9. Zhang, P. et al. Analysis of nanomaterial biocoronas in biological and environmental surroundings. Nat. Protoc. 19, 3000–3047 (2024).

    Google Scholar 

  10. Hajipour, M. J. et al. An overview of nanoparticle protein corona literature. Small 19, 2301838 (2023).

    Google Scholar 

  11. Basharat, A. R., Zang, Y., Sun, L. & Liu, X. TopFD: a proteoform feature detection tool for top–down proteomics. Anal. Chem. 95, 8189–8196 (2023).

    Google Scholar 

  12. Toby, T. K., Fornelli, L. & Kelleher, N. L. Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. 9, 499–519 (2016).

    Google Scholar 

  13. Lee, P. Y., Osman, J., Low, T. Y. & Jamal, R. Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis 11, 1799–1812 (2019).

    Google Scholar 

  14. Percy, A. J. et al. Clinical translation of MS-based, quantitative plasma proteomics: status, challenges, requirements, and potential. Expert Rev. Proteomics 13, 673–684 (2016).

    Google Scholar 

  15. Shuken, S. R. An introduction to mass spectrometry-based proteomics. J. Proteome Res. 22, 2151–2171 (2023).

    Google Scholar 

  16. Sadeghi, S. A. et al. Mass spectrometry-based top-down proteomics in nanomedicine: proteoform-specific measurement of protein corona. ACS Nano 18, 26024–26036 (2024).

    Google Scholar 

  17. Huang, C. F. et al. Deep profiling of plasma proteoforms with engineered nanoparticles for top-down proteomics. J. Proteome Res. 23, 4694–4703 (2024).

    Google Scholar 

  18. Ashkarran, A. A. et al. Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities. Nat. Commun. 13, 6610 (2022).

    Google Scholar 

  19. Docter, D. et al. Quantitative profiling of the protein coronas that form around nanoparticles. Nat. Protoc. 9, 2030–2044 (2014).

    Google Scholar 

  20. Mohammad-Beigi, H. et al. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association. Nat. Commun. 11, 4535 (2020).

    Google Scholar 

  21. Monopoli, M. P. et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011).

    Google Scholar 

  22. Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).

    Google Scholar 

  23. Schöttler, S. et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).

    Google Scholar 

  24. Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).

    Google Scholar 

  25. Suhre, K. et al. Nanoparticle enrichment mass-spectrometry proteomics identifies protein-altering variants for precise pQTL mapping. Nat. Commun. 15, 989 (2024).

    Google Scholar 

  26. Ferdosi, S. et al. Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano-bio interactions. Proc. Natl. Acad. Sci. USA 119, e2106053119 (2022).

    Google Scholar 

  27. Fredolini, C. et al. Shotgun proteomics coupled to nanoparticle-based biomarker enrichment reveals a novel panel of extracellular matrix proteins as candidate serum protein biomarkers for early-stage breast cancer detection. Breast Cancer Res. 22, 135 (2020).

    Google Scholar 

  28. Smith, L. M. et al. Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013).

    Google Scholar 

  29. Smith, L. M. et al. The Human Proteoform Project: defining the human proteome. Sci. Adv. 7, eabk0734 (2021).

    Google Scholar 

  30. Smith, L. M. & Kelleher, N. L. Proteoforms as the next proteomics currency. Science 359, 1106–1107 (2018).

    Google Scholar 

  31. Yates, J. R., Ruse, C. I. & Nakorchevsky, A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11, 49–79 (2009).

    Google Scholar 

  32. Zhang, Y., Fonslow, B. R., Shan, B., Baek, M.-C. & Yates, J. R. III. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 113, 2343–2394 (2013).

    Google Scholar 

  33. Neagu, A. N. et al. Applications of tandem mass spectrometry (MS/MS) in protein analysis for biomedical research. Molecules 27, 241 (2022).

    Google Scholar 

  34. Roberts, D. S. et al. Top-down proteomics. Nat. Rev. Methods Primers 4, 38 (2024).

    Google Scholar 

  35. Xu, T., Wang, Q., Wang, Q. & Sun, L. Mass spectrometry-intensive top-down proteomics: an update on technology advancements and biomedical applications. Anal. Methods 16, 4664–4682 (2024).

    Google Scholar 

  36. Cassidy, L. et al. Bottom-up and top-down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides. Proteomics 21, e2100008 (2021).

    Google Scholar 

  37. Barbir, R. et al. Interaction of differently sized, shaped, and functionalized silver and gold nanoparticles with glycosylated versus nonglycosylated transferrin. ACS Appl. Mater. Interfaces 13, 27533–27547 (2021).

    Google Scholar 

  38. Wan, S. et al. The “sweet” side of the protein corona: effects of glycosylation on nanoparticle–cell interactions. ACS Nano 9, 2157–2166 (2015).

    Google Scholar 

  39. Park, H. Y. et al. Silver nanoparticle interactions with glycated and non-glycated human serum albumin mediate toxicity. Front. Toxicol. 5, 1081753 (2023).

    Google Scholar 

  40. Ahmad, A. et al. Polymer-tethered glycosylated gold nanoparticles recruit sialylated glycoproteins into their protein corona, leading to off-target lectin binding. Nanoscale 14, 13261–13273 (2022).

    Google Scholar 

  41. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Google Scholar 

  42. Zhu, G., Sadeghi, S. A., Mahmoudi, M. & Sun, L. Deciphering nanoparticle protein coronas by capillary isoelectric focusing-mass spectrometry-based top-down proteomics. Chem. Commun. 60, 11528–11531 (2024).

  43. Ashkarran, A. A. et al. Small molecule modulation of protein corona for deep plasma proteome profiling. Nat. Commun. 15, 9638 (2024).

    Google Scholar 

  44. Adams, L. M. et al. Mapping the KRAS proteoform landscape in colorectal cancer identifies truncated KRAS4B that decreases MAPK signaling. J. Biol. Chem. 299, 102768 (2023).

    Google Scholar 

  45. McCool, E. N. et al. Deep top-down proteomics revealed significant proteoform-level differences between metastatic and nonmetastatic colorectal cancer cells. Sci. Adv. 8, eabq6348 (2022).

    Google Scholar 

  46. Treuel, L. et al. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. ACS Nano 8, 503–513 (2014).

    Google Scholar 

  47. Nassif, X. A revolution in the identification of pathogens in clinical laboratories. Clin. Infect. Dis. 49, 552–553 (2009).

    Google Scholar 

  48. Luo, R. Y. et al. Neutral-coating capillary electrophoresis coupled with high-resolution mass spectrometry for top-down identification of hemoglobin variants. Clin. Chem. 69, 56–67 (2022).

    Google Scholar 

  49. Barnidge, D. R. et al. Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J. Proteome Res. 13, 1419–1427 (2014).

    Google Scholar 

  50. Zhang, J. et al. Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J. Proteome Res. 10, 4054–4065 (2011).

    Google Scholar 

  51. Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485 (2015).

    Google Scholar 

  52. Mahmoudi, M. et al. Multiscale technologies for treatment of ischemic cardiomyopathy. Nat. Nanotechnol. 12, 845–855 (2017).

    Google Scholar 

  53. Schaffer, L. V. et al. Identification and quantification of proteoforms by mass spectrometry. Proteomics 19, e1800361 (2019).

    Google Scholar 

  54. Tran, J. C. et al. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480, 254–258 (2011).

    Google Scholar 

  55. Wang, Q., Wang, Q., Zhu, G. & Sun, L. Capillary electrophoresis-mass spectrometry for top-down proteomics. Annu. Rev. Anal. Chem. 18, 125–147 (2025).

    Google Scholar 

  56. Lubeckyj, R. A. et al. Single-Shot Top-Down Proteomics with Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry for Identification of Nearly 600 Escherichia coli Proteoforms. Anal. Chem. 89, 12059–12067 (2017).

  57. Shen, X. et al. Capillary zone electrophoresis-mass spectrometry for top-down proteomics. Trends Analyt. Chem. 120, 115644 (2019).

    Google Scholar 

  58. Xu, T., Wang, Q., Wang, Q. & Sun, L. Coupling high-field asymmetric waveform ion mobility spectrometry with capillary zone electrophoresis-tandem mass spectrometry for top-down proteomics. Anal. Chem. 95, 9497–9504 (2023).

    Google Scholar 

  59. Britz-McKibbin, P. & Chen, D. D. Y. Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction. Anal. Chem. 72, 1242–1252 (2000).

    Google Scholar 

  60. Wojcik, R., Dada, O. O., Sadilek, M. & Dovichi, N. J. Simplified capillary electrophoresis nanospray sheath-flow interface for high efficiency and sensitive peptide analysis. Rapid Commun. Mass Spectrom. 24, 2554–2560 (2010).

    Google Scholar 

  61. Sun, L., Zhu, G., Zhang, Z., Mou, S. & Dovichi, N. J. Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis–mass spectrometry analysis of complex proteome digests. J. Proteome Res. 14, 2312–2321 (2015).

    Google Scholar 

  62. Kou, Q., Xun, L. & Liu, X. TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization. Bioinformatics 32, 3495–3497 (2016).

  63. Kostelic, M. M. & Marty, M. T. Deconvolving native and intact protein mass spectra with UniDec. Methods Mol. Biol. 2500, 159–180 (2022).

    Google Scholar 

  64. Fellers, R. T. et al. ProSight Lite: graphical software to analyze top-down mass spectrometry data. Proteomics 15, 1235–1238 (2015).

    Google Scholar 

  65. McCool, E. N. & Liangliang, S. Comparing nanoflow reversed-phase liquid chromatography-tandem mass spectrometry and capillary zone electrophoresis-tandem mass spectrometry for top-down proteomics. Se Pu 37, 878–886 (2019).

    Google Scholar 

  66. Lubeckyj, R. A., Basharat, A. R., Shen, X., Liu, X. & Sun, L. Large-scale qualitative and quantitative top-down proteomics using capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry with nanograms of proteome samples. J. Am. Soc. Mass Spectrom. 30, 1435–1445 (2019).

    Google Scholar 

  67. Han, X. et al. In-line separation by capillary electrophoresis prior to analysis by top-down mass spectrometry enables sensitive characterization of protein complexes. J. Proteome Res. 13, 6078–6086 (2014).

    Google Scholar 

  68. Chen, D. et al. Predicting electrophoretic mobility of proteoforms for large-scale top-down proteomics. Anal. Chem. 92, 3503–3507 (2020).

    Google Scholar 

  69. Chen, D., Yang, Z., Shen, X. & Sun, L. Capillary zone electrophoresis-tandem mass spectrometry as an alternative to liquid chromatography-tandem mass spectrometry for top-down proteomics of histones. Anal. Chem. 93, 4417–4424 (2021).

    Google Scholar 

  70. Wang, Q., Sun, L. & Lundquist, P. K. Large-scale top-down proteomics of the Arabidopsis thaliana leaf and chloroplast proteomes. Proteomics 23, e2100377 (2023).

    Google Scholar 

  71. Cedervall, T. et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 104, 2050–2055 (2007).

  72. Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 105, 14265–14270 (2008).

  73. Walczyk, D., Bombelli, F. B., Monopoli, M. P., Lynch, I. & Dawson, K. A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 132, 5761–5768 (2010).

    Google Scholar 

  74. Saei, A. A., Sun, L. & Mahmoudi, M. The role of protein corona in advancing plasma proteomics. Proteomics 25, e2400028 (2025).

    Google Scholar 

  75. Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).

    Google Scholar 

  76. Priego Capote, F. & Sanchez, J.-C. Strategies for proteomic analysis of non-enzymatically glycated proteins. Mass Spectrom. Rev. 28, 135–146 (2009).

    Google Scholar 

  77. Ji, Y. et al. Direct detection of S-palmitoylation by mass spectrometry. Anal. Chem. 85, 11952–11959 (2013).

    Google Scholar 

  78. Cai, W., Tucholski, T. M., Gregorich, Z. R. & Ge, Y. Top-down proteomics: technology advancements and applications to heart diseases. Expert Rev. Proteomics 13, 717–730 (2016).

    Google Scholar 

  79. Tang, H., Wang, J. & Mahmoudi, M. Improving accuracy and reproducibility of mass spectrometry characterization of protein coronas on nanoparticles. Nat. Protoc. https://doi.org/10.1038/s41596-025-01204-1 (2025).

  80. Takemori, A. et al. PEPPI-MS: polyacrylamide-gel-based prefractionation for analysis of intact proteoforms and protein complexes by mass spectrometry. J. Proteome Res. 19, 3779–3791 (2020).

    Google Scholar 

  81. Fang, F., Gao, G., Wang, Q., Wang, Q. & Sun, L. Combining SDS-PAGE to capillary zone electrophoresis-tandem mass spectrometry for high-resolution top-down proteomics analysis of intact histone proteoforms. Proteomics 24, e2300650 (2024).

    Google Scholar 

  82. Cai, W. et al. Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal. Chem. 89, 5467–5475 (2017).

    Google Scholar 

  83. Ge, Y., Rybakova, I. N., Xu, Q. & Moss, R. L. Top-down high-resolution mass spectrometry of cardiac myosin binding protein C revealed that truncation alters protein phosphorylation state. Proc. Natl. Acad. Sci. USA 106, 12658–12663 (2009).

  84. Wang, Q. et al. Native proteomics by capillary zone electrophoresis-mass spectrometry. Angew. Chem. Int. Ed. 63, e202408370 (2024).

  85. Ashkarran, A. A., Gharibi, H., Modaresi, S. M., Saei, A. A. & Mahmoudi, M. Standardizing protein corona characterization in nanomedicine: a multicenter study to enhance reproducibility and data homogeneity. Nano Lett. 24, 9874–9881 (2024).

  86. Sheibani, S. et al. Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation. Nat. Commun. 12, 573 (2021).

    Google Scholar 

  87. Mahmoudi, M. The need for robust characterization of nanomaterials for nanomedicine applications. Nat. Commun. 12, 5246 (2021).

    Google Scholar 

  88. Mahmoudi, M. The need for improved methodology in protein corona analysis. Nat. Commun. 13, 49 (2022).

    Google Scholar 

  89. Chetwynd, A. J., Wheeler, K. E. & Lynch, I. Best practice in reporting corona studies: Minimum Information about Nanomaterial Biocorona Experiments (MINBE). Nano Today 28, 100758 (2019).

    Google Scholar 

  90. Leong, H. S. et al. On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14, 629–635 (2019).

    Google Scholar 

  91. Hasenkopf, I. et al. Computational prediction and experimental analysis of the nanoparticle-protein corona: showcasing an in vitro-in silico workflow providing FAIR data. Nano Today 46, 101561 (2022).

    Google Scholar 

  92. Sharifi, S., Mahmoud, N. N., Voke, E., Landry, M. P. & Mahmoudi, M. Importance of standardizing analytical characterization methodology for improved reliability of the nanomedicine literature. Nanomicro Lett. 14, 172 (2022).

    Google Scholar 

  93. Chen, S. et al. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments. J. Microsc. 261, 157–166 (2016).

    Google Scholar 

  94. Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A decade of the protein corona. ACS Nano 11, 11773–11776 (2017).

    Google Scholar 

  95. Chait, B. T. Mass spectrometry: bottom-up or top-down? Science 314, 65–66 (2006).

    Google Scholar 

  96. Peng, Y. et al. Top-down proteomics reveals concerted reductions in myofilament and Z-disc protein phosphorylation after acute myocardial infarction. Mol. Cell. Proteomics 13, 2752–2764 (2014).

    Google Scholar 

  97. Solntsev, S. K., Shortreed, M. R., Frey, B. L. & Smith, L. M. Enhanced global post-translational modification discovery with MetaMorpheus. J. Proteome Res. 17, 1844–1851 (2018).

    Google Scholar 

  98. Blume, J. E. et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 11, 3662 (2020).

    Google Scholar 

  99. Speers, A. E. & Wu, C. C. Proteomics of integral membrane proteins—theory and application. Chem. Rev. 107, 3687–3714 (2007).

    Google Scholar 

  100. Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).

    Google Scholar 

  101. Yang, Z., Shen, X., Chen, D. & Sun, L. Toward a universal sample preparation method for denaturing top-down proteomics of complex proteomes. J. Proteome Res. 19, 3315–3325 (2020).

    Google Scholar 

  102. Compton, P. D., Zamdborg, L., Thomas, P. M. & Kelleher, N. L. On the scalability and requirements of whole protein mass spectrometry. Anal. Chem. 83, 6868–6874 (2011).

    Google Scholar 

  103. Chen, D. et al. Recent advances (2019–2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics. Mass Spectrom. Rev. 42, 617–642 (2023).

    Google Scholar 

  104. Fulcher, J. M. et al. Enhancing top-down proteomics of brain tissue with FAIMS. J. Proteome Res. 20, 2780–2795 (2021).

    Google Scholar 

  105. Kline, J. T. et al. Orbitrap mass spectrometry and high-field asymmetric waveform ion mobility spectrometry (FAIMS) enable the in-depth analysis of human serum proteoforms. J. Proteome Res. 22, 3418–3426 (2023).

    Google Scholar 

  106. Catherman, A. D. et al. Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence. Mol. Cell. Proteomics 12, 3465–3473 (2013).

    Google Scholar 

  107. Shortreed, M. R. et al. Elucidating proteoform families from proteoform intact-mass and lysine-count measurements. J. Proteome Res. 15, 1213–1221 (2016).

    Google Scholar 

  108. Wang, Q., Fang, F., Wang, Q. & Sun, L. Capillary zone electrophoresis-high field asymmetric ion mobility spectrometry-tandem mass spectrometry for top-down characterization of histone proteoforms. Proteomics 24, e2200389 (2024).

    Google Scholar 

  109. Deutsch, E. W. et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 51, D1539–D1548 (2023).

    Google Scholar 

  110. Sadeghi, S. A. et al. Pilot evaluation of the long-term reproducibility of capillary zone electrophoresis–tandem mass spectrometry for top-down proteomics of a complex proteome sample. J. Proteome Res. 23, 1399–1407 (2024).

    Google Scholar 

Download references