References
-
Monopoli, M. P., Aberg, C., Salvati, A. & Dawson, K. A. Biomolecular coronas provide the biological identity of nanosized materials. Nat. Nanotechnol. 7, 779–786 (2012).
-
Mahmoudi, M., Landry, M. P., Moore, A. & Coreas, R. The protein corona from nanomedicine to environmental science. Nat. Rev. Mater. 8, 422–438 (2023).
-
Dawson, K. A. & Yan, Y. Current understanding of biological identity at the nanoscale and future prospects. Nat. Nanotechnol. 16, 229–242 (2021).
-
Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).
-
Pelaz, B. et al. Diverse applications of nanomedicine. ACS Nano 11, 2313–2381 (2017).
-
Li, S., Cortez-Jugo, C., Ju, Y. & Caruso, F. Approaching two decades: biomolecular coronas and bio–nano interactions. ACS Nano 18, 33257–33263 (2024).
-
Hadjidemetriou, M., Al-Ahmady, Z., Buggio, M., Swift, J. & Kostarelos, K. A novel scavenging tool for cancer biomarker discovery based on the blood-circulating nanoparticle protein corona. Biomaterials 188, 118–129 (2019).
-
Tenzer, S. et al. Rapid formation of plasma protein corona critically affects nanoparticle pathophysiology. Nat. Nanotechnol. 8, 772–781 (2013).
-
Zhang, P. et al. Analysis of nanomaterial biocoronas in biological and environmental surroundings. Nat. Protoc. 19, 3000–3047 (2024).
-
Hajipour, M. J. et al. An overview of nanoparticle protein corona literature. Small 19, 2301838 (2023).
-
Basharat, A. R., Zang, Y., Sun, L. & Liu, X. TopFD: a proteoform feature detection tool for top–down proteomics. Anal. Chem. 95, 8189–8196 (2023).
-
Toby, T. K., Fornelli, L. & Kelleher, N. L. Progress in top-down proteomics and the analysis of proteoforms. Annu. Rev. Anal. Chem. 9, 499–519 (2016).
-
Lee, P. Y., Osman, J., Low, T. Y. & Jamal, R. Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis 11, 1799–1812 (2019).
-
Percy, A. J. et al. Clinical translation of MS-based, quantitative plasma proteomics: status, challenges, requirements, and potential. Expert Rev. Proteomics 13, 673–684 (2016).
-
Shuken, S. R. An introduction to mass spectrometry-based proteomics. J. Proteome Res. 22, 2151–2171 (2023).
-
Sadeghi, S. A. et al. Mass spectrometry-based top-down proteomics in nanomedicine: proteoform-specific measurement of protein corona. ACS Nano 18, 26024–26036 (2024).
-
Huang, C. F. et al. Deep profiling of plasma proteoforms with engineered nanoparticles for top-down proteomics. J. Proteome Res. 23, 4694–4703 (2024).
-
Ashkarran, A. A. et al. Measurements of heterogeneity in proteomics analysis of the nanoparticle protein corona across core facilities. Nat. Commun. 13, 6610 (2022).
-
Docter, D. et al. Quantitative profiling of the protein coronas that form around nanoparticles. Nat. Protoc. 9, 2030–2044 (2014).
-
Mohammad-Beigi, H. et al. Mapping and identification of soft corona proteins at nanoparticles and their impact on cellular association. Nat. Commun. 11, 4535 (2020).
-
Monopoli, M. P. et al. Physical-chemical aspects of protein corona: relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc. 133, 2525–2534 (2011).
-
Salvati, A. et al. Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface. Nat. Nanotechnol. 8, 137–143 (2013).
-
Schöttler, S. et al. Protein adsorption is required for stealth effect of poly(ethylene glycol)- and poly(phosphoester)-coated nanocarriers. Nat. Nanotechnol. 11, 372–377 (2016).
-
Wheeler, K. E. et al. Environmental dimensions of the protein corona. Nat. Nanotechnol. 16, 617–629 (2021).
-
Suhre, K. et al. Nanoparticle enrichment mass-spectrometry proteomics identifies protein-altering variants for precise pQTL mapping. Nat. Commun. 15, 989 (2024).
-
Ferdosi, S. et al. Engineered nanoparticles enable deep proteomics studies at scale by leveraging tunable nano-bio interactions. Proc. Natl. Acad. Sci. USA 119, e2106053119 (2022).
-
Fredolini, C. et al. Shotgun proteomics coupled to nanoparticle-based biomarker enrichment reveals a novel panel of extracellular matrix proteins as candidate serum protein biomarkers for early-stage breast cancer detection. Breast Cancer Res. 22, 135 (2020).
-
Smith, L. M. et al. Proteoform: a single term describing protein complexity. Nat. Methods 10, 186–187 (2013).
-
Smith, L. M. et al. The Human Proteoform Project: defining the human proteome. Sci. Adv. 7, eabk0734 (2021).
-
Smith, L. M. & Kelleher, N. L. Proteoforms as the next proteomics currency. Science 359, 1106–1107 (2018).
-
Yates, J. R., Ruse, C. I. & Nakorchevsky, A. Proteomics by mass spectrometry: approaches, advances, and applications. Annu. Rev. Biomed. Eng. 11, 49–79 (2009).
-
Zhang, Y., Fonslow, B. R., Shan, B., Baek, M.-C. & Yates, J. R. III. Protein analysis by shotgun/bottom-up proteomics. Chem. Rev. 113, 2343–2394 (2013).
-
Neagu, A. N. et al. Applications of tandem mass spectrometry (MS/MS) in protein analysis for biomedical research. Molecules 27, 241 (2022).
-
Roberts, D. S. et al. Top-down proteomics. Nat. Rev. Methods Primers 4, 38 (2024).
-
Xu, T., Wang, Q., Wang, Q. & Sun, L. Mass spectrometry-intensive top-down proteomics: an update on technology advancements and biomedical applications. Anal. Methods 16, 4664–4682 (2024).
-
Cassidy, L. et al. Bottom-up and top-down proteomic approaches for the identification, characterization, and quantification of the low molecular weight proteome with focus on short open reading frame-encoded peptides. Proteomics 21, e2100008 (2021).
-
Barbir, R. et al. Interaction of differently sized, shaped, and functionalized silver and gold nanoparticles with glycosylated versus nonglycosylated transferrin. ACS Appl. Mater. Interfaces 13, 27533–27547 (2021).
-
Wan, S. et al. The “sweet” side of the protein corona: effects of glycosylation on nanoparticle–cell interactions. ACS Nano 9, 2157–2166 (2015).
-
Park, H. Y. et al. Silver nanoparticle interactions with glycated and non-glycated human serum albumin mediate toxicity. Front. Toxicol. 5, 1081753 (2023).
-
Ahmad, A. et al. Polymer-tethered glycosylated gold nanoparticles recruit sialylated glycoproteins into their protein corona, leading to off-target lectin binding. Nanoscale 14, 13261–13273 (2022).
-
Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).
-
Zhu, G., Sadeghi, S. A., Mahmoudi, M. & Sun, L. Deciphering nanoparticle protein coronas by capillary isoelectric focusing-mass spectrometry-based top-down proteomics. Chem. Commun. 60, 11528–11531 (2024).
-
Ashkarran, A. A. et al. Small molecule modulation of protein corona for deep plasma proteome profiling. Nat. Commun. 15, 9638 (2024).
-
Adams, L. M. et al. Mapping the KRAS proteoform landscape in colorectal cancer identifies truncated KRAS4B that decreases MAPK signaling. J. Biol. Chem. 299, 102768 (2023).
-
McCool, E. N. et al. Deep top-down proteomics revealed significant proteoform-level differences between metastatic and nonmetastatic colorectal cancer cells. Sci. Adv. 8, eabq6348 (2022).
-
Treuel, L. et al. Impact of protein modification on the protein corona on nanoparticles and nanoparticle-cell interactions. ACS Nano 8, 503–513 (2014).
-
Nassif, X. A revolution in the identification of pathogens in clinical laboratories. Clin. Infect. Dis. 49, 552–553 (2009).
-
Luo, R. Y. et al. Neutral-coating capillary electrophoresis coupled with high-resolution mass spectrometry for top-down identification of hemoglobin variants. Clin. Chem. 69, 56–67 (2022).
-
Barnidge, D. R. et al. Using mass spectrometry to monitor monoclonal immunoglobulins in patients with a monoclonal gammopathy. J. Proteome Res. 13, 1419–1427 (2014).
-
Zhang, J. et al. Top-down quantitative proteomics identified phosphorylation of cardiac troponin I as a candidate biomarker for chronic heart failure. J. Proteome Res. 10, 4054–4065 (2011).
-
Wei, K. et al. Epicardial FSTL1 reconstitution regenerates the adult mammalian heart. Nature 525, 479–485 (2015).
-
Mahmoudi, M. et al. Multiscale technologies for treatment of ischemic cardiomyopathy. Nat. Nanotechnol. 12, 845–855 (2017).
-
Schaffer, L. V. et al. Identification and quantification of proteoforms by mass spectrometry. Proteomics 19, e1800361 (2019).
-
Tran, J. C. et al. Mapping intact protein isoforms in discovery mode using top-down proteomics. Nature 480, 254–258 (2011).
-
Wang, Q., Wang, Q., Zhu, G. & Sun, L. Capillary electrophoresis-mass spectrometry for top-down proteomics. Annu. Rev. Anal. Chem. 18, 125–147 (2025).
-
Lubeckyj, R. A. et al. Single-Shot Top-Down Proteomics with Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry for Identification of Nearly 600 Escherichia coli Proteoforms. Anal. Chem. 89, 12059–12067 (2017).
-
Shen, X. et al. Capillary zone electrophoresis-mass spectrometry for top-down proteomics. Trends Analyt. Chem. 120, 115644 (2019).
-
Xu, T., Wang, Q., Wang, Q. & Sun, L. Coupling high-field asymmetric waveform ion mobility spectrometry with capillary zone electrophoresis-tandem mass spectrometry for top-down proteomics. Anal. Chem. 95, 9497–9504 (2023).
-
Britz-McKibbin, P. & Chen, D. D. Y. Selective focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction. Anal. Chem. 72, 1242–1252 (2000).
-
Wojcik, R., Dada, O. O., Sadilek, M. & Dovichi, N. J. Simplified capillary electrophoresis nanospray sheath-flow interface for high efficiency and sensitive peptide analysis. Rapid Commun. Mass Spectrom. 24, 2554–2560 (2010).
-
Sun, L., Zhu, G., Zhang, Z., Mou, S. & Dovichi, N. J. Third-generation electrokinetically pumped sheath-flow nanospray interface with improved stability and sensitivity for automated capillary zone electrophoresis–mass spectrometry analysis of complex proteome digests. J. Proteome Res. 14, 2312–2321 (2015).
-
Kou, Q., Xun, L. & Liu, X. TopPIC: a software tool for top-down mass spectrometry-based proteoform identification and characterization. Bioinformatics 32, 3495–3497 (2016).
-
Kostelic, M. M. & Marty, M. T. Deconvolving native and intact protein mass spectra with UniDec. Methods Mol. Biol. 2500, 159–180 (2022).
-
Fellers, R. T. et al. ProSight Lite: graphical software to analyze top-down mass spectrometry data. Proteomics 15, 1235–1238 (2015).
-
McCool, E. N. & Liangliang, S. Comparing nanoflow reversed-phase liquid chromatography-tandem mass spectrometry and capillary zone electrophoresis-tandem mass spectrometry for top-down proteomics. Se Pu 37, 878–886 (2019).
-
Lubeckyj, R. A., Basharat, A. R., Shen, X., Liu, X. & Sun, L. Large-scale qualitative and quantitative top-down proteomics using capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry with nanograms of proteome samples. J. Am. Soc. Mass Spectrom. 30, 1435–1445 (2019).
-
Han, X. et al. In-line separation by capillary electrophoresis prior to analysis by top-down mass spectrometry enables sensitive characterization of protein complexes. J. Proteome Res. 13, 6078–6086 (2014).
-
Chen, D. et al. Predicting electrophoretic mobility of proteoforms for large-scale top-down proteomics. Anal. Chem. 92, 3503–3507 (2020).
-
Chen, D., Yang, Z., Shen, X. & Sun, L. Capillary zone electrophoresis-tandem mass spectrometry as an alternative to liquid chromatography-tandem mass spectrometry for top-down proteomics of histones. Anal. Chem. 93, 4417–4424 (2021).
-
Wang, Q., Sun, L. & Lundquist, P. K. Large-scale top-down proteomics of the Arabidopsis thaliana leaf and chloroplast proteomes. Proteomics 23, e2100377 (2023).
-
Cedervall, T. et al. Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. USA 104, 2050–2055 (2007).
-
Lundqvist, M. et al. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA 105, 14265–14270 (2008).
-
Walczyk, D., Bombelli, F. B., Monopoli, M. P., Lynch, I. & Dawson, K. A. What the cell “sees” in bionanoscience. J. Am. Chem. Soc. 132, 5761–5768 (2010).
-
Saei, A. A., Sun, L. & Mahmoudi, M. The role of protein corona in advancing plasma proteomics. Proteomics 25, e2400028 (2025).
-
Nel, A. E. et al. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 8, 543–557 (2009).
-
Priego Capote, F. & Sanchez, J.-C. Strategies for proteomic analysis of non-enzymatically glycated proteins. Mass Spectrom. Rev. 28, 135–146 (2009).
-
Ji, Y. et al. Direct detection of S-palmitoylation by mass spectrometry. Anal. Chem. 85, 11952–11959 (2013).
-
Cai, W., Tucholski, T. M., Gregorich, Z. R. & Ge, Y. Top-down proteomics: technology advancements and applications to heart diseases. Expert Rev. Proteomics 13, 717–730 (2016).
-
Tang, H., Wang, J. & Mahmoudi, M. Improving accuracy and reproducibility of mass spectrometry characterization of protein coronas on nanoparticles. Nat. Protoc. https://doi.org/10.1038/s41596-025-01204-1 (2025).
-
Takemori, A. et al. PEPPI-MS: polyacrylamide-gel-based prefractionation for analysis of intact proteoforms and protein complexes by mass spectrometry. J. Proteome Res. 19, 3779–3791 (2020).
-
Fang, F., Gao, G., Wang, Q., Wang, Q. & Sun, L. Combining SDS-PAGE to capillary zone electrophoresis-tandem mass spectrometry for high-resolution top-down proteomics analysis of intact histone proteoforms. Proteomics 24, e2300650 (2024).
-
Cai, W. et al. Top-down proteomics of large proteins up to 223 kDa enabled by serial size exclusion chromatography strategy. Anal. Chem. 89, 5467–5475 (2017).
-
Ge, Y., Rybakova, I. N., Xu, Q. & Moss, R. L. Top-down high-resolution mass spectrometry of cardiac myosin binding protein C revealed that truncation alters protein phosphorylation state. Proc. Natl. Acad. Sci. USA 106, 12658–12663 (2009).
-
Wang, Q. et al. Native proteomics by capillary zone electrophoresis-mass spectrometry. Angew. Chem. Int. Ed. 63, e202408370 (2024).
-
Ashkarran, A. A., Gharibi, H., Modaresi, S. M., Saei, A. A. & Mahmoudi, M. Standardizing protein corona characterization in nanomedicine: a multicenter study to enhance reproducibility and data homogeneity. Nano Lett. 24, 9874–9881 (2024).
-
Sheibani, S. et al. Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation. Nat. Commun. 12, 573 (2021).
-
Mahmoudi, M. The need for robust characterization of nanomaterials for nanomedicine applications. Nat. Commun. 12, 5246 (2021).
-
Mahmoudi, M. The need for improved methodology in protein corona analysis. Nat. Commun. 13, 49 (2022).
-
Chetwynd, A. J., Wheeler, K. E. & Lynch, I. Best practice in reporting corona studies: Minimum Information about Nanomaterial Biocorona Experiments (MINBE). Nano Today 28, 100758 (2019).
-
Leong, H. S. et al. On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14, 629–635 (2019).
-
Hasenkopf, I. et al. Computational prediction and experimental analysis of the nanoparticle-protein corona: showcasing an in vitro-in silico workflow providing FAIR data. Nano Today 46, 101561 (2022).
-
Sharifi, S., Mahmoud, N. N., Voke, E., Landry, M. P. & Mahmoudi, M. Importance of standardizing analytical characterization methodology for improved reliability of the nanomedicine literature. Nanomicro Lett. 14, 172 (2022).
-
Chen, S. et al. Avoiding artefacts during electron microscopy of silver nanomaterials exposed to biological environments. J. Microsc. 261, 157–166 (2016).
-
Ke, P. C., Lin, S., Parak, W. J., Davis, T. P. & Caruso, F. A decade of the protein corona. ACS Nano 11, 11773–11776 (2017).
-
Chait, B. T. Mass spectrometry: bottom-up or top-down? Science 314, 65–66 (2006).
-
Peng, Y. et al. Top-down proteomics reveals concerted reductions in myofilament and Z-disc protein phosphorylation after acute myocardial infarction. Mol. Cell. Proteomics 13, 2752–2764 (2014).
-
Solntsev, S. K., Shortreed, M. R., Frey, B. L. & Smith, L. M. Enhanced global post-translational modification discovery with MetaMorpheus. J. Proteome Res. 17, 1844–1851 (2018).
-
Blume, J. E. et al. Rapid, deep and precise profiling of the plasma proteome with multi-nanoparticle protein corona. Nat. Commun. 11, 3662 (2020).
-
Speers, A. E. & Wu, C. C. Proteomics of integral membrane proteins—theory and application. Chem. Rev. 107, 3687–3714 (2007).
-
Wiśniewski, J. R., Zougman, A., Nagaraj, N. & Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 6, 359–362 (2009).
-
Yang, Z., Shen, X., Chen, D. & Sun, L. Toward a universal sample preparation method for denaturing top-down proteomics of complex proteomes. J. Proteome Res. 19, 3315–3325 (2020).
-
Compton, P. D., Zamdborg, L., Thomas, P. M. & Kelleher, N. L. On the scalability and requirements of whole protein mass spectrometry. Anal. Chem. 83, 6868–6874 (2011).
-
Chen, D. et al. Recent advances (2019–2021) of capillary electrophoresis-mass spectrometry for multilevel proteomics. Mass Spectrom. Rev. 42, 617–642 (2023).
-
Fulcher, J. M. et al. Enhancing top-down proteomics of brain tissue with FAIMS. J. Proteome Res. 20, 2780–2795 (2021).
-
Kline, J. T. et al. Orbitrap mass spectrometry and high-field asymmetric waveform ion mobility spectrometry (FAIMS) enable the in-depth analysis of human serum proteoforms. J. Proteome Res. 22, 3418–3426 (2023).
-
Catherman, A. D. et al. Large-scale top-down proteomics of the human proteome: membrane proteins, mitochondria, and senescence. Mol. Cell. Proteomics 12, 3465–3473 (2013).
-
Shortreed, M. R. et al. Elucidating proteoform families from proteoform intact-mass and lysine-count measurements. J. Proteome Res. 15, 1213–1221 (2016).
-
Wang, Q., Fang, F., Wang, Q. & Sun, L. Capillary zone electrophoresis-high field asymmetric ion mobility spectrometry-tandem mass spectrometry for top-down characterization of histone proteoforms. Proteomics 24, e2200389 (2024).
-
Deutsch, E. W. et al. The ProteomeXchange consortium at 10 years: 2023 update. Nucleic Acids Res. 51, D1539–D1548 (2023).
-
Sadeghi, S. A. et al. Pilot evaluation of the long-term reproducibility of capillary zone electrophoresis–tandem mass spectrometry for top-down proteomics of a complex proteome sample. J. Proteome Res. 23, 1399–1407 (2024).
