References
-
Chen, S. et al. Starfish-inspired wearable bioelectronic systems for physiological signal monitoring during motion and real-time heart disease diagnosis. Sci. Adv. 11, eadv2406 (2025).
-
Fullenkamp, D. E. et al. Simultaneous electromechanical monitoring in engineered heart tissues using a mesoscale framework. Sci. Adv. 10, eado7089 (2024).
-
Imani, S. et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).
-
Jin, X. et al. Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens. Bioelectron. 196, 113760 (2022).
-
Tzavelis, A. et al. Development of a miniaturized mechanoacoustic sensor for continuous, objective cough detection, characterization and physiologic monitoring in children with cystic fibrosis. IEEE J. Biomed. Health Inf. 28, 5941–5952 (2024).
-
Botonis, P. G., Arsoniadis, G. G., Smilios, I. & Toubekis, A. G. In-season training load variation – heart rate recovery, perceived recovery status, and performance in elite male water polo players: a pilot study. Sports Health 17, 144–149 (2024).
-
Gadaleta, M. et al. Passive detection of COVID-19 with wearable sensors and explainable machine learning algorithms. NPJ Digit Med. 4, 166 (2021).
-
Cho, S. I. et al. Engineering TALE-linked deaminases to facilitate precision adenine base editing in mitochondrial DNA. Cell 187, 95–109.e126 (2024).
-
Krishnan, S. K., Prokhorov, E., Bahena, D., Esparza, R. & Meyyappan, M. Chitosan-covered Pd@Pt core-shell nanocubes for direct electron transfer in electrochemical enzymatic glucose biosensor. ACS Omega 2, 1896–1904 (2017).
-
Ling, W., Shang, X., Liu, J. & Tang, T. A skin-mountable flexible biosensor based on Cu-MOF/PEDOT composites for sweat ascorbic acid monitoring. Biosens. Bioelectron. 267, 116852 (2025).
-
Madhvapathy, S. R. et al. Implantable bioelectronics and wearable sensors for kidney health and disease. Nat. Rev. Nephrol. 21, 443–463 (2025).
-
Nyein, H. Y. Y. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 5, eaaw9906 (2019).
-
Qaiser, N. et al. A robust wearable point-of-care CNT-based strain sensor for wirelessly monitoring throat-related illnesses. Adv. Funct. Mater. 31, 2103375 (2021).
-
Trung, T. Q. & Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28, 4338–4372 (2016).
-
Wu, S. J. & Zhao, X. Bioadhesive technology platforms. Chem. Rev. 123, 14084–14118 (2023).
-
Min, J. et al. Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023).
-
O’Brien, M. K., Hohl, K., Lieber, R. L. & Jayaraman, A. Automate, illuminate, predict: a universal framework for integrating wearable sensors in healthcare. Digit Biomark. 8, 149–158 (2024).
-
Qaiser, N., Khan, S. M. & Hussain, M. M. In-plane and out-of-plane structural response of spiral interconnects for highly stretchable electronics. J. Appl Phys. 124, 034905 (2018).
-
Bandodkar, A. J. et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2015).
-
Choi, M. K. et al. cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Health. Mater. 5, 80–87 (2016).
-
Derkus, B. Applying the miniaturization technologies for biosensor design. Biosens. Bioelectron. 79, 901–913 (2016).
-
Kim, J. Y. et al. Continuous glucose monitoring with structured education in adults with type 2 diabetes managed by multiple daily insulin injections: a multicentre randomised controlled trial. Diabetology 67, 1223–1234 (2024).
-
Vora, L. K. et al. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 15, 1916 (2023).
-
Sharma, A., Badea, M., Tiwari, S. & Marty, J. L. Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. Molecules 26, 748 (2021).
-
Yoon, J. et al. Nanotechnology-based wearable electrochemical biosensor for disease diagnosis. ACS Sens. 10, 1675–1689 (2025).
-
Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).
-
Bandodkar, A. J. & Wang, J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014).
-
Meng, J. et al. A tonically active master neuron modulates mutually exclusive motor states at two timescales. Sci. Adv. 10, eadk0002 (2024).
-
Ayçiçek, S., Cevher, S. u. C. k. & Acar, S. Recent trends in hydrogel-based biosensor technology for the diagnosis of neurodegenerative diseases. ACS Appl. Bio Mater. 8, 5424–5444 (2025).
-
Keles, G., Derici, U. S., Altunay, B. B., Yilgor, P. & Kurbanoglu, S. Applications of 3D-printed electrochemical sensors in medical diagnostics. in Additively Manufactured Electrochemical Sensors: Design, Performance, and Applications, 177–250 (Wiley, 2025).
-
Atabay, M., Inci, F. & Saylan, Y. Computational studies for the development of extracellular vesicle-based biosensors. Biosens. Bioelectron. 277, 117275 (2025).
-
Song, J. K. et al. Wearable force touch sensor array using a flexible and transparent electrode. Adv. Funct. Mater. 27, 1605286 (2017).
-
Wang, S., Chinnasamy, T., Lifson, M. A., Inci, F. & Demirci, U. Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol. 34, 909–921 (2016).
-
Kumar, R. & Parashar, A. Atomistic simulations of pristine and nanoparticle reinforced hydrogels: a review. Wiley Interdiscip. Rev. Comput. Mol. Sci. 13, e1655 (2023).
-
Yan, Z. et al. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci. Adv. 2, e1601014 (2016).
-
Zhu, Y. & Lu, N. Mechanics of Flexible and Stretchable Electronics (Wiley-VCH, 2025).
-
Cui, X., Wu, L., Zhang, C. & Li, Z. Implantable self-powered systems for electrical stimulation medical devices. Adv. Sci. 12, e2412044 (2025).
-
Yang, Y. et al. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 27, 1604096 (2016).
-
Bocchetta, P. et al. Soft materials for wearable/flexible electrochemical energy conversion, storage, and biosensor devices. Materials 13, 2733 (2020).
-
Shetti, N. P. et al. Skin-patchable electrodes for biosensor applications: a review. ACS Biomater. Sci. Eng. 6, 1823–1835 (2020).
-
Vedadghavami, A. et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 62, 42–63 (2017).
-
Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).
-
Carpinteri, A. Decrease of apparent tensile and bending strength with specimen size: two different explanations based on fracture mechanics. Int. J. Solid Struct. 25, 407–429 (1989).
-
Kenry, Yeo, J. C. & Lim, C. T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2, 16043 (2016).
-
Vaghasiya, J. V., Mayorga-Martinez, C. C. & Pumera, M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flex. Electron. 7, 26 (2023).
-
Himmelhaus, M. & Francois, A. In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor. Biosens. Bioelectron. 25, 418–427 (2009).
-
Prasad, S. et al. 3D nanorhombus nickel nitride as stable and cost-effective counter electrodes for dye-sensitized solar cells and supercapacitor applications. RSC Adv. 8, 8828–8835 (2018).
-
Ge, Z., Yang, F., Goh, J. C., Ramakrishna, S. & Lee, E. H. Biomaterials and scaffolds for ligament tissue engineering. J. Biomed. Mater. Res. A 77, 639–652 (2006).
-
Niinomi, M. & Nakai, M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011, 836587 (2011).
-
Pena, A. E. et al. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes. J. Neural Eng. 14, 066014 (2017).
-
Mousavi, A., Rahimnejad, M., Azimzadeh, M., Akbari, M. & Savoji, H. Recent advances in smart wearable sensors as electronic skin. J. Mater. Chem. B 11, 10332–10354 (2023).
-
Zeng, Q. & Huang, Z. Challenges and opportunities of implantable neural interfaces: from material, electrochemical and biological perspectives. Adv. Funct. Mater. 33, 2301223 (2023).
-
Park, B., Jeong, C., Ok, J. & Kim, T.-i. Materials and structural designs toward motion artifact-free bioelectronics. Chem. Rev. 124, 6148-6197 (2024).
-
Gong, S., Lu, Y., Yin, J., Levin, A. & Cheng, W. Materials-driven soft wearable bioelectronics for connected healthcare. Chem. Rev. 124, 455–553 (2024).
-
Tan, E. L. et al. Implantable biosensors for real-time strain and pressure monitoring. Sensors 8, 6396–6406 (2008).
-
Wang, L. & Beebe, D. J. Characterization of a silicon-based shear-force sensor on human subjects. IEEE Trans. Biomed. Eng. 49, 1340–1347 (2002).
-
Yamagishi, K., Zhou, W., Ching, T., Huang, S. Y. & Hashimoto, M. Ultra-deformable and tissue-adhesive liquid metal antennas with high wireless powering efficiency. Adv. Mater. 33, e2008062 (2021).
-
Guo, Z. et al. A flexible neural implant with ultrathin substrate for low-invasive brain-computer interface applications. Microsyst. Nanoeng. 8, 133 (2022).
-
Shen, K. et al. Nanocomposite conductive hydrogels with Robust elasticity and multifunctional responsiveness for flexible sensing and wound monitoring. Mater. Horiz. 10, 2096–2108 (2023).
-
Zhao, L. et al. On-demand contact-mode switchable cerebral cortex biosensors enhanced by magnetic actuation. ACS Appl. Mater. Interfaces 17, 20671–20684 (2025).
-
Roy, A. et al. A highly stretchable, conductive, and transparent bioadhesive hydrogel as a flexible sensor for enhanced real-time human health monitoring. Adv. Mater. 36, e2404225 (2024).
-
Zhai, Q. & Cheng, W. Soft and stretchable electrochemical biosensors. Mater. Today Nano 7, 100041 (2019).
-
Hu, B. et al. Ultrathin crystalline silicon–based omnidirectional strain gauges for implantable/wearable characterization of soft tissue biomechanics. Sci. Adv. 10, eadp8804 (2024).
-
Deo, K. A. et al. Nanoengineered ink for designing 3 d printable flexible bioelectronics. ACS Nano 16, 8798–8811 (2022).
-
Wang, C., Sani, E. S. & Gao, W. Wearable bioelectronics for chronic wound management. Adv. Funct. Mater. 32 https://doi.org/10.1002/adfm.202111022 (2022).
-
Shao, Y. et al. Multi-functional, conformal systems with ultrathin crystalline-silicon-based bioelectronics for characterization of intraocular pressure and ocular surface temperature. Biosens. Bioelectron. 267, 116786 (2025).
-
Su, X. et al. Integrated wearable sensors with bending/stretching selectivity and extremely enhanced sensitivity derived from agarose-based ionic conductor and its 3D-shaping. Chem. Eng. J. 389, 124503 (2020).
-
Brooks, A. K., Chakravarty, S., Ali, M. & Yadavalli, V. K. Kirigami-inspired biodesign for applications in healthcare. Adv. Mater. 34, e2109550 (2022).
-
Gideon, O., Samuel, H. S. & Okino, I. A. Biocompatible materials for next-generation biosensors. Discov. Chem. 1, 34 (2024).
-
Ashok, A. et al. Flexible nanoarchitectonics for biosensing and physiological monitoring applications. Small 19, e2204946 (2023).
-
Bae, W. G. et al. Enhanced skin adhesive patch with modulus-tunable composite micropillars. Adv. Health. Mater. 2, 109–113 (2013).
-
Choi, S., Lee, H., Ghaffari, R., Hyeon, T. & Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016).
-
Ling, H., Liu, S., Zheng, Z. & Yan, F. Organic flexible electronics. Small Methods 2, 1800070 (2018).
-
Choi, C. K., English, A. E., Jun, S. I., Kihm, K. D. & Rack, P. D. An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes. Biosens. Bioelectron. 22, 2585–2590 (2007).
-
Miao, J. & Fan, T. Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon 202, 495–527 (2023).
-
Liu, X. et al. Bioinspired, microstructured silk fibroin adhesives for flexible skin sensors. ACS Appl Mater. Interfaces 12, 5601–5609 (2020).
-
Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).
-
Shi, Z. et al. Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding. Adv. Sci. 6, 1801617 (2019).
-
Sang, M., Kim, K., Shin, J. & Yu, K. J. Ultra-thin flexible encapsulating materials for soft bio-integrated electronics. Adv. Sci. 9, e2202980 (2022).
-
Bovone, G., Dudaryeva, O. Y., Marco-Dufort, B. & Tibbitt, M. W. Engineering hydrogel adhesion for biomedical applications via chemical design of the junction. ACS Biomater. Sci. Eng. 7, 4048–4076 (2021).
-
Li, Y., Veronica, A., Ma, J. & Nyein, H. Y. Y. Materials, structure, and interface of stretchable interconnects for wearable bioelectronics. Adv. Mater. 37, e2408456 (2025).
-
Morikawa, Y. et al. Ultrastretchable kirigami bioprobes. Adv. Health. Mater. 7, 1701100 (2018).
-
Han, W. B. et al. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14, 2263 (2023).
-
Wu, H., Huang, Y., Xu, F., Duan, Y. & Yin, Z. Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv. Mater. 28, 9881–9919 (2016).
-
Xu, R. et al. Kirigami-inspired, highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting. Microsyst. Nanoeng. 4, 36 (2018).
-
Xiao, Y. et al. High-adhesive flexible electrodes and their manufacture: a review. Micromachines 12, 1505 (2021).
-
Zhang, Y. Stretchable Bioelectronics for Medical Devices and Systems (eds John A. R., Roozbeh, G. & Kim, D. H.) 53–68 (Springer International Publishing, 2016).
-
Yuan, C. et al. Bionic design and performance of electrode for bioelectrical signal monitoring. Adv. Mater. Interfaces 9, 2200532 (2022).
-
Yeh, C. et al. Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring. Nano Energy 104, 107852 (2022).
-
Narasimhan, V. et al. Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices. Nat. Nanotechnol. 13, 512–519 (2018).
-
Lan, T. et al. Treefrog-inspired flexible electrode with high permeability, stable adhesion, and robust durability. Adv. Mater. 36, e2404761 (2024).
-
Pettinelli, S. et al. High-performance bioelectronic tongue for the simultaneous analysis of phenols, sugars and organic acids in wines. J. Sci. Food Agric. 105, 1430–1438 (2025).
-
Khan, M. R., Khalilian, A. & Kang, S. W. A high sensitivity idc-electronic tongue using dielectric/sensing membranes with solvatochromic dyes. Sensors 16, 668 (2016).
-
Pal, S., Kumar, D., Ulucan-Karnak, F., Narang, J. & Shukla, S. K. Bio-inspired electronic sensors for healthcare applications. Chem. Eng. J. 499, 155894 (2024).
-
Alam, F. et al. Prospects for additive manufacturing in contact lens devices. Adv. Eng. Mater. 23. https://doi.org/10.1002/adem.202000941 (2020).
-
Chen, Y. et al. A biochemical sensor with continuous extended stability in vivo. Nat. Biomed. Eng. 9, 1517–1530 (2025).
-
Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).
-
Zhao, K., Yuan, Y., Wang, S. & Cui, L. Effect of parylene coating on the performance of implantable pressure sensor. IEEE Sens. J. 24, 24593–24599 (2024).
-
Hashemi, S. et al. Ultra-sensitive wireless capacitive nanocomposite-based pressure sensors for health monitoring. Adv. Mater. Technol. 10, e01316 (2025).
-
Li, Z. et al. An all-solid-state fluorinated ion-conductive elastomer with outstanding mechanical properties and high environmental stability for flexible electronics. Chem. Eng. J. 505, 159437 (2025).
-
Yuk, H. et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017).
-
Zhang, J. et al. “Self-Defensive” antifouling zwitterionic hydrogel coatings on polymeric substrates. ACS Appl. Mater. Interfaces 14, 56097–56109 (2022).
-
Kim, H.-J. et al. Review of near-field wireless power and communication for biomedical applications. IEEE Access 5, 21264–21285 (2017).
-
Zou, H. et al. NFC/RFID-enabled wearables and implants for biomedical applications. Microsyst. Nanoeng. 11, 191 (2025).
-
Lin, R. et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 11, 444 (2020).
-
Xu, Z., Hao, Y., Luo, A. & Jiang, Y. Technologies and applications in wireless biosensors for real-time health monitoring. Med-X 2, 24 (2024).
-
Kim, H., Rigo, B., Wong, G., Lee, Y. J. & Yeo, W. H. Advances in wireless, batteryless, implantable electronics for real-time, continuous physiological monitoring. NanoMicro Lett. 16, 52 (2023).
-
Liu, Y. & Bao, Y. Real-time remote measurement of distance using ultra-wideband (UWB) sensors. AUTCON 150, 104849 (2023).
-
Mustaqim, M. et al. Ultra-wideband antenna for wearable Internet of Things devices and wireless body area network applications. Int. J. Numer Model Electron Netw. Device Field 32, e2590 (2019).
-
Kim, C. Y. et al. Wireless technologies for wearable electronics: a review. Adv. Electron Mater. 11, 2400884 (2025).
-
Kong, L. et al. Wireless technologies in flexible and wearable sensing: from materials design, system integration to applications. Adv. Mater. 36, e2400333 (2024).
-
Jin, X., Liu, C., Xu, T., Su, L. & Zhang, X. Artificial intelligence biosensors: challenges and prospects. Biosens. Bioelectron. 165, 112412 (2020).
-
Hadi, M. S., Lawey, A. Q., El-Gorashi, T. E. H. & Elmirghani, J. M. H. Big data analytics for wireless and wired network design: a survey. Comput. Netw. 132, 180–199 (2018).
-
L’Heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. M. Machine learning with big data: challenges and approaches. IEEE Access 5, 7776–7797 (2017).
-
Beuchert, J., Solowjow, F., Trimpe, S. & Seel, T. Overcoming bandwidth limitations in wireless sensor networks by exploitation of cyclic signal patterns: an event-triggered learning approach. Sensors 20, 260 (2020).
-
Yin, L. et al. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun. 12, 1542 (2021).
-
Jegan, R. & Nimi, W. S. On the development of low power wearable devices for assessment of physiological vital parameters: a systematic review. J. Public Health 32, 1093–1108 (2024).
-
Smith, A. A., Li, R. & Tse, Z. T. H. Reshaping healthcare with wearable biosensors. Sci. Rep. 13, 4998 (2023).
-
Tiwari, N. et al. Recent advancements in sampling, power management strategies and development in applications for non-invasive wearable electrochemical sensors. J. Electroanal. Chem. 907, 116064 (2022).
-
Abduljaleel, H. K., Gharghan, S. K. & Al-Gburi, A. J. A. Multi-layer square coil-based wireless power transfer for biomedical implants. Prog. Electromagn. Res. B 111, 83–98 (2025).
-
Nguyen, T. H., Lee, J., Lee, D., Nguyen, M. C. & Kim, J. Omni-directionally flexible, high performance all-solid-state micro-supercapacitor array-based energy storage system for wearable electronics. Chem. Eng. J. 505, 159375 (2025).
-
He, Z. et al. Highly stretchable, deformation-stable wireless powering antenna for wearable electronics. Nano Energy 112, 108461 (2023).
-
Liu, Q., Mkongwa, K. G. & Zhang, C. Performance issues in wireless body area networks for the healthcare application: a survey and future prospects. SN Appl Sci. 3, 155 (2021).
-
Lopez-Linares Roman, K., Vermeeren, G., Thielens, A., Joseph, W. & Martens, L. Characterization of path loss and absorption for a wireless radio frequency link between an in-body endoscopy capsule and a receiver outside the body. EURASIP J. Wirel. Commun. Netw. 2014, 21 (2014).
-
Kumar, M., Yadav, V. & Yadav, S. P. Advance comprehensive analysis for Zigbee network-based IoT system security. Discov. Comput. 27, 22 (2024).
-
Mohan, A. & Kumar, N. Implantable antennas for biomedical applications: a systematic review. Biomed. Eng. Online 23, 87 (2024).
-
Hussain, A., Abbas, N. & Ali, A. Inkjet printing: a viable technology for biosensor fabrication. Chemosensors 10, 103 (2022).
-
Baek, S., Jo, Y., Lee, Y., Kwon, J. & Jung, S. Design and integration of organic printed thin-film transistor-based soft biosensors for wearable applications. ACS Appl. Electron. Mater. 6, 7657–7678 (2024).
-
Kwon, J., Baek, S., Lee, Y., Tokito, S. & Jung, S. Layout-to-bitmap conversion and design rules for inkjet-printed large-scale integrated circuits. Langmuir 37, 10692–10701 (2021).
-
Bihar, E. et al. A fully inkjet-printed disposable glucose sensor on paper. npj Flex. Electron 2, 30 (2018).
-
Lo, L. W. et al. An inkjet-printed PEDOT:PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl. Mater. Interfaces 13, 21693–21702 (2021).
-
Sekine, T. et al. Fully printed wearable vital sensor for human pulse rate monitoring using ferroelectric polymer. Sci. Rep. 8, 4442 (2018).
-
Zavanelli, N. & Yeo, W. H. Advances in screen printing of conductive nanomaterials for stretchable electronics. ACS Omega 6, 9344–9351 (2021).
-
Li, W. et al. Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater. 35, e2207447 (2023).
-
Park, H. J. et al. Fluid-dynamics-processed highly stretchable, conductive, and printable graphene inks for real-time monitoring sweat during stretching exercise. Adv. Funct. Mater. 31, 2011059 (2021).
-
Becker, H. & Gärtner, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21, 12–26 (2000).
-
Voldman, J., Gray, M. L. & Schmidt, M. A. Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1, 401–425 (1999).
-
Erdem, O., Es, I., Akceoglu, G. A., Saylan, Y. & Inci, F. Recent advances in microneedle-based sensors for sampling, diagnosis and monitoring of chronic diseases. Biosensors 11, 296 (2021).
-
Goud, K. Y. et al. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward parkinson management. ACS Sens. 4, 2196–2204 (2019).
-
Windmiller, J. R. et al. Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst 136, 1846–1851 (2011).
-
Zhang, B. L., Yang, Y., Zhao, Z. Q. & Guo, X. D. A gold nanoparticles deposited polymer microneedle enzymatic biosensor for glucose sensing. Electrochim. Acta 358, 136917 (2020).
-
Kim, J. et al. Individually-addressable composite microneedle electrode array by mold-and-place method for glucose detection. Sens. Actuator B Chem. 401, 134884 (2024).
-
Rigo, B. et al. Soft implantable printed bioelectronic system for wireless continuous monitoring of restenosis. Biosens. Bioelectron. 241, 115650 (2023).
-
Kim, Y., Chica-Carrillo, E. C. & Lee, H. J. Microfabricated sensors for non-invasive, real-time monitoring of organoids. Micro Nano Syst. Lett. 12, 26 (2024).
-
An, J. et al. Drug evaluation of parkinson’s disease patient-derived midbrain organoids using mesoporous Au nanodot-patterned 3D concave electrode. ACS Sens. 9, 3573–3580 (2024).
-
Chang, A.-Y. et al. Dopamine sensing with robust carbon nanotube implanted polymer micropillar array electrodes fabricated by coupling micromolding and infiltration coating processes. Electrochim. Acta 368, 137632 (2021).
-
Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).
-
Wang, X., Yoon, E. & Meng, E. A microfabricated nanobubble-based sensor for physiological pressure monitoring. J. Microelectromech. Syst. 32, 542–551 (2023).
-
Mariello, M. et al. Wireless, battery-free, and real-time monitoring of water permeation across thin-film encapsulation. Nat. Commun. 15, 7443 (2024).
-
Dion, G. et al. In-sensor human gait analysis with machine learning in a wearable microfabricated accelerometer. Commun. Eng. 3, 48 (2024).
-
Ali, M. A., Hu, C., Yttri, E. A. & Panat, R. Recent advances in 3D printing of biomedical sensing devices. Adv. Funct. Mater. 32, 2107671 (2022).
-
Parupelli, S. K. & Desai, S. The 3D printing of nanocomposites for wearable biosensors: recent advances, challenges, and prospects. Bioengineering 11, 32 (2023).
-
Silva, L. R. G. et al. Electrochemical Biosensors 3D printed by fused deposition modeling: actualities, trends, and challenges. Biosensors 15, 57 (2025).
-
Yi, Q. et al. All-3D-printed, flexible, and hybrid wearable bioelectronic tactile sensors using biocompatible nanocomposites for health monitoring. Adv. Mater. Technol. 7, 2101034 (2021).
-
Yi, Q. et al. A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 101, 107511 (2022).
-
Mandal, A., Morali, A., Skorobogatiy, M. & Bodkhe, S. 3D printing of polyvinylidene fluoride-based piezoelectric sensors for noninvasive continuous blood pressure monitoring. Adv. Eng. Mater. 26. https://doi.org/10.1002/adem.202301292 (2023).
-
Sel, K. et al. Continuous cuffless blood pressure monitoring with a wearable ring bioimpedance device. npj Digit. Med. 6, 59 (2023).
-
Ma, C. et al. 3D-printing of conductive inks based flexible tactile sensor for monitoring of temperature, strain and pressure. J. Manuf. Process 87, 1–10 (2023).
-
Chen, X. et al. Fast-response non-contact flexible humidity sensor based on direct-writing printing for respiration monitoring. Biosensors 13, 792 (2023).
-
Li, J.-W., Lee, J. C.-M., Chuang, K.-C. & Chiu, C.-W. Photocured, highly flexible, and stretchable 3D-printed graphene/polymer nanocomposites for electrocardiography and electromyography smart clothing. Prog. Org. Coat. 176, 107378 (2023).
-
Gopinath, S. C. & Ramli, M. M. Hybrid-Nanomaterials: Fabrication, Characterization and Applications (Springer Nature, 2024).
-
Vargas-Bernal, R. in Hybrid Nanomaterials – Flexible Electronics Materials (eds Vargas-Bernal, R., He, P., & Zhang, S.) (IntechOpen, 2020).
-
Mahato, K. et al. Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat. Electron. 7, 735–750 (2024).
-
Ryu, W. M., Lee, Y., Son, Y., Park, G. & Park, S. Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing. Adv. Fiber Mater. 5, 1712–1724 (2023).
-
Li, T. et al. An integrated and conductive hydrogel-paper patch for simultaneous sensing of chemical-electrophysiological signals. Biosens. Bioelectron. 198, 113855 (2022).
-
Zhang, S. et al. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron. 6, 11 (2022).
-
Shirzaei Sani, E. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023).
-
Deng, Y. et al. A soft thermal sensor for the continuous assessment of flow in vascular access. Nat. Commun. 16, 38 (2025).
-
Pan, S. et al. Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv. Funct. Mater. 30, 1909540 (2020).
-
Chaudhary, S., Agarwal, A., Mishra, D. & Shah, S. A review on green communication for wearable and implantable wireless body area networks. Comput. Netw. 252, 110693 (2024).
-
Waly, M. I. et al. Optimization of a compact wearable LoRa patch antenna for vital sign monitoring in wban medical applications using machine learning. IEEE Access 12, 103860–103879 (2024).
-
Cong, C. et al. Self-powered strain sensing devices with wireless transmission: DIW-printed conductive hydrogel electrodes featuring stretchable and self-healing properties. J. Colloid Interface Sci. 678, 588–598 (2025).
-
Ma, X. et al. A monolithically integrated in-textile wristband for wireless epidermal biosensing. Sci. Adv. 9, eadj2763 (2023).
-
Kim, T. et al. Spider-inspired tunable mechanosensor for biomedical applications. npj Flex. Electron. 7, 12 (2023).
-
Rauf, S. et al. Fully screen-printed and gentle-to-skin wet ECG electrodes with compact wireless readout for cardiac diagnosis and remote monitoring. ACS Nano 18, 10074–10087 (2024).
-
Zhang, Z. et al. Thermoresponsive dynamic wet-adhesive epidermal interface for motion-robust multiplexed sweat biosensing. Biosens. Bioelectron. 290, 117949 (2025).
-
del Bosque, A. et al. Highly flexible strain sensors based on CNT-reinforced ecoflex silicone rubber for wireless facemask breathing monitoring via bluetooth. ACS Appl. Polym. Mater. 5, 8589–8599 (2023).
-
Xiao, G. et al. Weavable yarn-shaped supercapacitor in sweat-activated self-charging power textile for wireless sweat biosensing. Biosens. Bioelectron. 235, 115389 (2023).
-
Herbert, R., Lim, H.-R., Rigo, B. & Yeo, W.-H. Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8, eabm1175 (2022).
-
Yeh, C.-C., Lo, S.-H., Xu, M.-X. & Yang, Y.-J. Fabrication of a flexible wireless pressure sensor for intravascular blood pressure monitoring. Microelectron. Eng. 213, 55–61 (2019).
-
Stauffer, F. et al. Soft electronic strain sensor with chipless wireless readout: toward real-time monitoring of bladder volume. Adv. Mater. Technol. 3, 1800031 (2018).
