Mechanics and bio-interface engineering in flexible biosensors for continuous health monitoring

mechanics-and-bio-interface-engineering-in-flexible-biosensors-for-continuous-health-monitoring
Mechanics and bio-interface engineering in flexible biosensors for continuous health monitoring

References

  1. Chen, S. et al. Starfish-inspired wearable bioelectronic systems for physiological signal monitoring during motion and real-time heart disease diagnosis. Sci. Adv. 11, eadv2406 (2025).

    Google Scholar 

  2. Fullenkamp, D. E. et al. Simultaneous electromechanical monitoring in engineered heart tissues using a mesoscale framework. Sci. Adv. 10, eado7089 (2024).

    Google Scholar 

  3. Imani, S. et al. A wearable chemical-electrophysiological hybrid biosensing system for real-time health and fitness monitoring. Nat. Commun. 7, 11650 (2016).

    Google Scholar 

  4. Jin, X. et al. Fully integrated flexible biosensor for wearable continuous glucose monitoring. Biosens. Bioelectron. 196, 113760 (2022).

    Google Scholar 

  5. Tzavelis, A. et al. Development of a miniaturized mechanoacoustic sensor for continuous, objective cough detection, characterization and physiologic monitoring in children with cystic fibrosis. IEEE J. Biomed. Health Inf. 28, 5941–5952 (2024).

    Google Scholar 

  6. Botonis, P. G., Arsoniadis, G. G., Smilios, I. & Toubekis, A. G. In-season training load variation – heart rate recovery, perceived recovery status, and performance in elite male water polo players: a pilot study. Sports Health 17, 144–149 (2024).

    Google Scholar 

  7. Gadaleta, M. et al. Passive detection of COVID-19 with wearable sensors and explainable machine learning algorithms. NPJ Digit Med. 4, 166 (2021).

    Google Scholar 

  8. Cho, S. I. et al. Engineering TALE-linked deaminases to facilitate precision adenine base editing in mitochondrial DNA. Cell 187, 95–109.e126 (2024).

    Google Scholar 

  9. Krishnan, S. K., Prokhorov, E., Bahena, D., Esparza, R. & Meyyappan, M. Chitosan-covered Pd@Pt core-shell nanocubes for direct electron transfer in electrochemical enzymatic glucose biosensor. ACS Omega 2, 1896–1904 (2017).

    Google Scholar 

  10. Ling, W., Shang, X., Liu, J. & Tang, T. A skin-mountable flexible biosensor based on Cu-MOF/PEDOT composites for sweat ascorbic acid monitoring. Biosens. Bioelectron. 267, 116852 (2025).

    Google Scholar 

  11. Madhvapathy, S. R. et al. Implantable bioelectronics and wearable sensors for kidney health and disease. Nat. Rev. Nephrol. 21, 443–463 (2025).

    Google Scholar 

  12. Nyein, H. Y. Y. et al. Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 5, eaaw9906 (2019).

    Google Scholar 

  13. Qaiser, N. et al. A robust wearable point-of-care CNT-based strain sensor for wirelessly monitoring throat-related illnesses. Adv. Funct. Mater. 31, 2103375 (2021).

    Google Scholar 

  14. Trung, T. Q. & Lee, N. E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare. Adv. Mater. 28, 4338–4372 (2016).

    Google Scholar 

  15. Wu, S. J. & Zhao, X. Bioadhesive technology platforms. Chem. Rev. 123, 14084–14118 (2023).

    Google Scholar 

  16. Min, J. et al. Skin-interfaced wearable sweat sensors for precision medicine. Chem. Rev. 123, 5049–5138 (2023).

    Google Scholar 

  17. O’Brien, M. K., Hohl, K., Lieber, R. L. & Jayaraman, A. Automate, illuminate, predict: a universal framework for integrating wearable sensors in healthcare. Digit Biomark. 8, 149–158 (2024).

    Google Scholar 

  18. Qaiser, N., Khan, S. M. & Hussain, M. M. In-plane and out-of-plane structural response of spiral interconnects for highly stretchable electronics. J. Appl Phys. 124, 034905 (2018).

    Google Scholar 

  19. Bandodkar, A. J. et al. Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2015).

    Google Scholar 

  20. Choi, M. K. et al. cephalopod-inspired miniaturized suction cups for smart medical skin. Adv. Health. Mater. 5, 80–87 (2016).

    Google Scholar 

  21. Derkus, B. Applying the miniaturization technologies for biosensor design. Biosens. Bioelectron. 79, 901–913 (2016).

    Google Scholar 

  22. Kim, J. Y. et al. Continuous glucose monitoring with structured education in adults with type 2 diabetes managed by multiple daily insulin injections: a multicentre randomised controlled trial. Diabetology 67, 1223–1234 (2024).

    Google Scholar 

  23. Vora, L. K. et al. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 15, 1916 (2023).

    Google Scholar 

  24. Sharma, A., Badea, M., Tiwari, S. & Marty, J. L. Wearable biosensors: an alternative and practical approach in healthcare and disease monitoring. Molecules 26, 748 (2021).

    Google Scholar 

  25. Yoon, J. et al. Nanotechnology-based wearable electrochemical biosensor for disease diagnosis. ACS Sens. 10, 1675–1689 (2025).

    Google Scholar 

  26. Bandodkar, A. J. et al. Battery-free, skin-interfaced microfluidic/electronic systems for simultaneous electrochemical, colorimetric, and volumetric analysis of sweat. Sci. Adv. 5, eaav3294 (2019).

    Google Scholar 

  27. Bandodkar, A. J. & Wang, J. Non-invasive wearable electrochemical sensors: a review. Trends Biotechnol. 32, 363–371 (2014).

    Google Scholar 

  28. Meng, J. et al. A tonically active master neuron modulates mutually exclusive motor states at two timescales. Sci. Adv. 10, eadk0002 (2024).

    Google Scholar 

  29. Ayçiçek, S., Cevher, S. u. C. k. & Acar, S. Recent trends in hydrogel-based biosensor technology for the diagnosis of neurodegenerative diseases. ACS Appl. Bio Mater. 8, 5424–5444 (2025).

  30. Keles, G., Derici, U. S., Altunay, B. B., Yilgor, P. & Kurbanoglu, S. Applications of 3D-printed electrochemical sensors in medical diagnostics. in Additively Manufactured Electrochemical Sensors: Design, Performance, and Applications, 177–250 (Wiley, 2025).

  31. Atabay, M., Inci, F. & Saylan, Y. Computational studies for the development of extracellular vesicle-based biosensors. Biosens. Bioelectron. 277, 117275 (2025).

    Google Scholar 

  32. Song, J. K. et al. Wearable force touch sensor array using a flexible and transparent electrode. Adv. Funct. Mater. 27, 1605286 (2017).

    Google Scholar 

  33. Wang, S., Chinnasamy, T., Lifson, M. A., Inci, F. & Demirci, U. Flexible substrate-based devices for point-of-care diagnostics. Trends Biotechnol. 34, 909–921 (2016).

    Google Scholar 

  34. Kumar, R. & Parashar, A. Atomistic simulations of pristine and nanoparticle reinforced hydrogels: a review. Wiley Interdiscip. Rev. Comput. Mol. Sci. 13, e1655 (2023).

    Google Scholar 

  35. Yan, Z. et al. Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci. Adv. 2, e1601014 (2016).

    Google Scholar 

  36. Zhu, Y. & Lu, N. Mechanics of Flexible and Stretchable Electronics (Wiley-VCH, 2025).

  37. Cui, X., Wu, L., Zhang, C. & Li, Z. Implantable self-powered systems for electrical stimulation medical devices. Adv. Sci. 12, e2412044 (2025).

    Google Scholar 

  38. Yang, Y. et al. Ultrafine graphene nanomesh with large on/off ratio for high-performance flexible biosensors. Adv. Funct. Mater. 27, 1604096 (2016).

    Google Scholar 

  39. Bocchetta, P. et al. Soft materials for wearable/flexible electrochemical energy conversion, storage, and biosensor devices. Materials 13, 2733 (2020).

    Google Scholar 

  40. Shetti, N. P. et al. Skin-patchable electrodes for biosensor applications: a review. ACS Biomater. Sci. Eng. 6, 1823–1835 (2020).

    Google Scholar 

  41. Vedadghavami, A. et al. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications. Acta Biomater. 62, 42–63 (2017).

    Google Scholar 

  42. Ates, H. C. et al. End-to-end design of wearable sensors. Nat. Rev. Mater. 7, 887–907 (2022).

    Google Scholar 

  43. Carpinteri, A. Decrease of apparent tensile and bending strength with specimen size: two different explanations based on fracture mechanics. Int. J. Solid Struct. 25, 407–429 (1989).

    Google Scholar 

  44. Kenry, Yeo, J. C. & Lim, C. T. Emerging flexible and wearable physical sensing platforms for healthcare and biomedical applications. Microsyst. Nanoeng. 2, 16043 (2016).

  45. Vaghasiya, J. V., Mayorga-Martinez, C. C. & Pumera, M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. npj Flex. Electron. 7, 26 (2023).

    Google Scholar 

  46. Himmelhaus, M. & Francois, A. In-vitro sensing of biomechanical forces in live cells by a whispering gallery mode biosensor. Biosens. Bioelectron. 25, 418–427 (2009).

    Google Scholar 

  47. Prasad, S. et al. 3D nanorhombus nickel nitride as stable and cost-effective counter electrodes for dye-sensitized solar cells and supercapacitor applications. RSC Adv. 8, 8828–8835 (2018).

    Google Scholar 

  48. Ge, Z., Yang, F., Goh, J. C., Ramakrishna, S. & Lee, E. H. Biomaterials and scaffolds for ligament tissue engineering. J. Biomed. Mater. Res. A 77, 639–652 (2006).

    Google Scholar 

  49. Niinomi, M. & Nakai, M. Titanium-based biomaterials for preventing stress shielding between implant devices and bone. Int. J. Biomater. 2011, 836587 (2011).

    Google Scholar 

  50. Pena, A. E. et al. Mechanical fatigue resistance of an implantable branched lead system for a distributed set of longitudinal intrafascicular electrodes. J. Neural Eng. 14, 066014 (2017).

    Google Scholar 

  51. Mousavi, A., Rahimnejad, M., Azimzadeh, M., Akbari, M. & Savoji, H. Recent advances in smart wearable sensors as electronic skin. J. Mater. Chem. B 11, 10332–10354 (2023).

    Google Scholar 

  52. Zeng, Q. & Huang, Z. Challenges and opportunities of implantable neural interfaces: from material, electrochemical and biological perspectives. Adv. Funct. Mater. 33, 2301223 (2023).

    Google Scholar 

  53. Park, B., Jeong, C., Ok, J. & Kim, T.-i. Materials and structural designs toward motion artifact-free bioelectronics. Chem. Rev. 124, 6148-6197 (2024).

  54. Gong, S., Lu, Y., Yin, J., Levin, A. & Cheng, W. Materials-driven soft wearable bioelectronics for connected healthcare. Chem. Rev. 124, 455–553 (2024).

    Google Scholar 

  55. Tan, E. L. et al. Implantable biosensors for real-time strain and pressure monitoring. Sensors 8, 6396–6406 (2008).

    Google Scholar 

  56. Wang, L. & Beebe, D. J. Characterization of a silicon-based shear-force sensor on human subjects. IEEE Trans. Biomed. Eng. 49, 1340–1347 (2002).

    Google Scholar 

  57. Yamagishi, K., Zhou, W., Ching, T., Huang, S. Y. & Hashimoto, M. Ultra-deformable and tissue-adhesive liquid metal antennas with high wireless powering efficiency. Adv. Mater. 33, e2008062 (2021).

    Google Scholar 

  58. Guo, Z. et al. A flexible neural implant with ultrathin substrate for low-invasive brain-computer interface applications. Microsyst. Nanoeng. 8, 133 (2022).

    Google Scholar 

  59. Shen, K. et al. Nanocomposite conductive hydrogels with Robust elasticity and multifunctional responsiveness for flexible sensing and wound monitoring. Mater. Horiz. 10, 2096–2108 (2023).

    Google Scholar 

  60. Zhao, L. et al. On-demand contact-mode switchable cerebral cortex biosensors enhanced by magnetic actuation. ACS Appl. Mater. Interfaces 17, 20671–20684 (2025).

    Google Scholar 

  61. Roy, A. et al. A highly stretchable, conductive, and transparent bioadhesive hydrogel as a flexible sensor for enhanced real-time human health monitoring. Adv. Mater. 36, e2404225 (2024).

    Google Scholar 

  62. Zhai, Q. & Cheng, W. Soft and stretchable electrochemical biosensors. Mater. Today Nano 7, 100041 (2019).

    Google Scholar 

  63. Hu, B. et al. Ultrathin crystalline silicon–based omnidirectional strain gauges for implantable/wearable characterization of soft tissue biomechanics. Sci. Adv. 10, eadp8804 (2024).

    Google Scholar 

  64. Deo, K. A. et al. Nanoengineered ink for designing 3 d printable flexible bioelectronics. ACS Nano 16, 8798–8811 (2022).

    Google Scholar 

  65. Wang, C., Sani, E. S. & Gao, W. Wearable bioelectronics for chronic wound management. Adv. Funct. Mater. 32 https://doi.org/10.1002/adfm.202111022 (2022).

  66. Shao, Y. et al. Multi-functional, conformal systems with ultrathin crystalline-silicon-based bioelectronics for characterization of intraocular pressure and ocular surface temperature. Biosens. Bioelectron. 267, 116786 (2025).

    Google Scholar 

  67. Su, X. et al. Integrated wearable sensors with bending/stretching selectivity and extremely enhanced sensitivity derived from agarose-based ionic conductor and its 3D-shaping. Chem. Eng. J. 389, 124503 (2020).

    Google Scholar 

  68. Brooks, A. K., Chakravarty, S., Ali, M. & Yadavalli, V. K. Kirigami-inspired biodesign for applications in healthcare. Adv. Mater. 34, e2109550 (2022).

    Google Scholar 

  69. Gideon, O., Samuel, H. S. & Okino, I. A. Biocompatible materials for next-generation biosensors. Discov. Chem. 1, 34 (2024).

    Google Scholar 

  70. Ashok, A. et al. Flexible nanoarchitectonics for biosensing and physiological monitoring applications. Small 19, e2204946 (2023).

    Google Scholar 

  71. Bae, W. G. et al. Enhanced skin adhesive patch with modulus-tunable composite micropillars. Adv. Health. Mater. 2, 109–113 (2013).

    Google Scholar 

  72. Choi, S., Lee, H., Ghaffari, R., Hyeon, T. & Kim, D. H. Recent advances in flexible and stretchable bio-electronic devices integrated with nanomaterials. Adv. Mater. 28, 4203–4218 (2016).

    Google Scholar 

  73. Ling, H., Liu, S., Zheng, Z. & Yan, F. Organic flexible electronics. Small Methods 2, 1800070 (2018).

    Google Scholar 

  74. Choi, C. K., English, A. E., Jun, S. I., Kihm, K. D. & Rack, P. D. An endothelial cell compatible biosensor fabricated using optically thin indium tin oxide silicon nitride electrodes. Biosens. Bioelectron. 22, 2585–2590 (2007).

    Google Scholar 

  75. Miao, J. & Fan, T. Flexible and stretchable transparent conductive graphene-based electrodes for emerging wearable electronics. Carbon 202, 495–527 (2023).

    Google Scholar 

  76. Liu, X. et al. Bioinspired, microstructured silk fibroin adhesives for flexible skin sensors. ACS Appl Mater. Interfaces 12, 5601–5609 (2020).

    Google Scholar 

  77. Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2010).

    Google Scholar 

  78. Shi, Z. et al. Silk-enabled conformal multifunctional bioelectronics for investigation of spatiotemporal epileptiform activities and multimodal neural encoding/decoding. Adv. Sci. 6, 1801617 (2019).

    Google Scholar 

  79. Sang, M., Kim, K., Shin, J. & Yu, K. J. Ultra-thin flexible encapsulating materials for soft bio-integrated electronics. Adv. Sci. 9, e2202980 (2022).

    Google Scholar 

  80. Bovone, G., Dudaryeva, O. Y., Marco-Dufort, B. & Tibbitt, M. W. Engineering hydrogel adhesion for biomedical applications via chemical design of the junction. ACS Biomater. Sci. Eng. 7, 4048–4076 (2021).

    Google Scholar 

  81. Li, Y., Veronica, A., Ma, J. & Nyein, H. Y. Y. Materials, structure, and interface of stretchable interconnects for wearable bioelectronics. Adv. Mater. 37, e2408456 (2025).

    Google Scholar 

  82. Morikawa, Y. et al. Ultrastretchable kirigami bioprobes. Adv. Health. Mater. 7, 1701100 (2018).

    Google Scholar 

  83. Han, W. B. et al. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat. Commun. 14, 2263 (2023).

    Google Scholar 

  84. Wu, H., Huang, Y., Xu, F., Duan, Y. & Yin, Z. Energy harvesters for wearable and stretchable electronics: from flexibility to stretchability. Adv. Mater. 28, 9881–9919 (2016).

    Google Scholar 

  85. Xu, R. et al. Kirigami-inspired, highly stretchable micro-supercapacitor patches fabricated by laser conversion and cutting. Microsyst. Nanoeng. 4, 36 (2018).

    Google Scholar 

  86. Xiao, Y. et al. High-adhesive flexible electrodes and their manufacture: a review. Micromachines 12, 1505 (2021).

    Google Scholar 

  87. Zhang, Y. Stretchable Bioelectronics for Medical Devices and Systems (eds John A. R., Roozbeh, G. & Kim, D. H.) 53–68 (Springer International Publishing, 2016).

  88. Yuan, C. et al. Bionic design and performance of electrode for bioelectrical signal monitoring. Adv. Mater. Interfaces 9, 2200532 (2022).

    Google Scholar 

  89. Yeh, C. et al. Bioinspired shark skin-based liquid metal triboelectric nanogenerator for self-powered gait analysis and long-term rehabilitation monitoring. Nano Energy 104, 107852 (2022).

    Google Scholar 

  90. Narasimhan, V. et al. Multifunctional biophotonic nanostructures inspired by the longtail glasswing butterfly for medical devices. Nat. Nanotechnol. 13, 512–519 (2018).

    Google Scholar 

  91. Lan, T. et al. Treefrog-inspired flexible electrode with high permeability, stable adhesion, and robust durability. Adv. Mater. 36, e2404761 (2024).

    Google Scholar 

  92. Pettinelli, S. et al. High-performance bioelectronic tongue for the simultaneous analysis of phenols, sugars and organic acids in wines. J. Sci. Food Agric. 105, 1430–1438 (2025).

    Google Scholar 

  93. Khan, M. R., Khalilian, A. & Kang, S. W. A high sensitivity idc-electronic tongue using dielectric/sensing membranes with solvatochromic dyes. Sensors 16, 668 (2016).

    Google Scholar 

  94. Pal, S., Kumar, D., Ulucan-Karnak, F., Narang, J. & Shukla, S. K. Bio-inspired electronic sensors for healthcare applications. Chem. Eng. J. 499, 155894 (2024).

    Google Scholar 

  95. Alam, F. et al. Prospects for additive manufacturing in contact lens devices. Adv. Eng. Mater. 23. https://doi.org/10.1002/adem.202000941 (2020).

  96. Chen, Y. et al. A biochemical sensor with continuous extended stability in vivo. Nat. Biomed. Eng. 9, 1517–1530 (2025).

    Google Scholar 

  97. Liu, Y. et al. Soft and elastic hydrogel-based microelectronics for localized low-voltage neuromodulation. Nat. Biomed. Eng. 3, 58–68 (2019).

    Google Scholar 

  98. Zhao, K., Yuan, Y., Wang, S. & Cui, L. Effect of parylene coating on the performance of implantable pressure sensor. IEEE Sens. J. 24, 24593–24599 (2024).

    Google Scholar 

  99. Hashemi, S. et al. Ultra-sensitive wireless capacitive nanocomposite-based pressure sensors for health monitoring. Adv. Mater. Technol. 10, e01316 (2025).

    Google Scholar 

  100. Li, Z. et al. An all-solid-state fluorinated ion-conductive elastomer with outstanding mechanical properties and high environmental stability for flexible electronics. Chem. Eng. J. 505, 159437 (2025).

    Google Scholar 

  101. Yuk, H. et al. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nat. Commun. 8, 14230 (2017).

    Google Scholar 

  102. Zhang, J. et al. “Self-Defensive” antifouling zwitterionic hydrogel coatings on polymeric substrates. ACS Appl. Mater. Interfaces 14, 56097–56109 (2022).

    Google Scholar 

  103. Kim, H.-J. et al. Review of near-field wireless power and communication for biomedical applications. IEEE Access 5, 21264–21285 (2017).

    Google Scholar 

  104. Zou, H. et al. NFC/RFID-enabled wearables and implants for biomedical applications. Microsyst. Nanoeng. 11, 191 (2025).

    Google Scholar 

  105. Lin, R. et al. Wireless battery-free body sensor networks using near-field-enabled clothing. Nat. Commun. 11, 444 (2020).

    Google Scholar 

  106. Xu, Z., Hao, Y., Luo, A. & Jiang, Y. Technologies and applications in wireless biosensors for real-time health monitoring. Med-X 2, 24 (2024).

    Google Scholar 

  107. Kim, H., Rigo, B., Wong, G., Lee, Y. J. & Yeo, W. H. Advances in wireless, batteryless, implantable electronics for real-time, continuous physiological monitoring. NanoMicro Lett. 16, 52 (2023).

    Google Scholar 

  108. Liu, Y. & Bao, Y. Real-time remote measurement of distance using ultra-wideband (UWB) sensors. AUTCON 150, 104849 (2023).

    Google Scholar 

  109. Mustaqim, M. et al. Ultra-wideband antenna for wearable Internet of Things devices and wireless body area network applications. Int. J. Numer Model Electron Netw. Device Field 32, e2590 (2019).

    Google Scholar 

  110. Kim, C. Y. et al. Wireless technologies for wearable electronics: a review. Adv. Electron Mater. 11, 2400884 (2025).

    Google Scholar 

  111. Kong, L. et al. Wireless technologies in flexible and wearable sensing: from materials design, system integration to applications. Adv. Mater. 36, e2400333 (2024).

    Google Scholar 

  112. Jin, X., Liu, C., Xu, T., Su, L. & Zhang, X. Artificial intelligence biosensors: challenges and prospects. Biosens. Bioelectron. 165, 112412 (2020).

    Google Scholar 

  113. Hadi, M. S., Lawey, A. Q., El-Gorashi, T. E. H. & Elmirghani, J. M. H. Big data analytics for wireless and wired network design: a survey. Comput. Netw. 132, 180–199 (2018).

    Google Scholar 

  114. L’Heureux, A., Grolinger, K., Elyamany, H. F. & Capretz, M. A. M. Machine learning with big data: challenges and approaches. IEEE Access 5, 7776–7797 (2017).

    Google Scholar 

  115. Beuchert, J., Solowjow, F., Trimpe, S. & Seel, T. Overcoming bandwidth limitations in wireless sensor networks by exploitation of cyclic signal patterns: an event-triggered learning approach. Sensors 20, 260 (2020).

    Google Scholar 

  116. Yin, L. et al. A self-sustainable wearable multi-modular E-textile bioenergy microgrid system. Nat. Commun. 12, 1542 (2021).

    Google Scholar 

  117. Jegan, R. & Nimi, W. S. On the development of low power wearable devices for assessment of physiological vital parameters: a systematic review. J. Public Health 32, 1093–1108 (2024).

    Google Scholar 

  118. Smith, A. A., Li, R. & Tse, Z. T. H. Reshaping healthcare with wearable biosensors. Sci. Rep. 13, 4998 (2023).

    Google Scholar 

  119. Tiwari, N. et al. Recent advancements in sampling, power management strategies and development in applications for non-invasive wearable electrochemical sensors. J. Electroanal. Chem. 907, 116064 (2022).

    Google Scholar 

  120. Abduljaleel, H. K., Gharghan, S. K. & Al-Gburi, A. J. A. Multi-layer square coil-based wireless power transfer for biomedical implants. Prog. Electromagn. Res. B 111, 83–98 (2025).

    Google Scholar 

  121. Nguyen, T. H., Lee, J., Lee, D., Nguyen, M. C. & Kim, J. Omni-directionally flexible, high performance all-solid-state micro-supercapacitor array-based energy storage system for wearable electronics. Chem. Eng. J. 505, 159375 (2025).

    Google Scholar 

  122. He, Z. et al. Highly stretchable, deformation-stable wireless powering antenna for wearable electronics. Nano Energy 112, 108461 (2023).

    Google Scholar 

  123. Liu, Q., Mkongwa, K. G. & Zhang, C. Performance issues in wireless body area networks for the healthcare application: a survey and future prospects. SN Appl Sci. 3, 155 (2021).

    Google Scholar 

  124. Lopez-Linares Roman, K., Vermeeren, G., Thielens, A., Joseph, W. & Martens, L. Characterization of path loss and absorption for a wireless radio frequency link between an in-body endoscopy capsule and a receiver outside the body. EURASIP J. Wirel. Commun. Netw. 2014, 21 (2014).

    Google Scholar 

  125. Kumar, M., Yadav, V. & Yadav, S. P. Advance comprehensive analysis for Zigbee network-based IoT system security. Discov. Comput. 27, 22 (2024).

    Google Scholar 

  126. Mohan, A. & Kumar, N. Implantable antennas for biomedical applications: a systematic review. Biomed. Eng. Online 23, 87 (2024).

    Google Scholar 

  127. Hussain, A., Abbas, N. & Ali, A. Inkjet printing: a viable technology for biosensor fabrication. Chemosensors 10, 103 (2022).

    Google Scholar 

  128. Baek, S., Jo, Y., Lee, Y., Kwon, J. & Jung, S. Design and integration of organic printed thin-film transistor-based soft biosensors for wearable applications. ACS Appl. Electron. Mater. 6, 7657–7678 (2024).

    Google Scholar 

  129. Kwon, J., Baek, S., Lee, Y., Tokito, S. & Jung, S. Layout-to-bitmap conversion and design rules for inkjet-printed large-scale integrated circuits. Langmuir 37, 10692–10701 (2021).

    Google Scholar 

  130. Bihar, E. et al. A fully inkjet-printed disposable glucose sensor on paper. npj Flex. Electron 2, 30 (2018).

    Google Scholar 

  131. Lo, L. W. et al. An inkjet-printed PEDOT:PSS-based stretchable conductor for wearable health monitoring device applications. ACS Appl. Mater. Interfaces 13, 21693–21702 (2021).

    Google Scholar 

  132. Sekine, T. et al. Fully printed wearable vital sensor for human pulse rate monitoring using ferroelectric polymer. Sci. Rep. 8, 4442 (2018).

    Google Scholar 

  133. Zavanelli, N. & Yeo, W. H. Advances in screen printing of conductive nanomaterials for stretchable electronics. ACS Omega 6, 9344–9351 (2021).

    Google Scholar 

  134. Li, W. et al. Large-scale ultra-robust MoS2 patterns directly synthesized on polymer substrate for flexible sensing electronics. Adv. Mater. 35, e2207447 (2023).

    Google Scholar 

  135. Park, H. J. et al. Fluid-dynamics-processed highly stretchable, conductive, and printable graphene inks for real-time monitoring sweat during stretching exercise. Adv. Funct. Mater. 31, 2011059 (2021).

    Google Scholar 

  136. Becker, H. & Gärtner, C. Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21, 12–26 (2000).

    Google Scholar 

  137. Voldman, J., Gray, M. L. & Schmidt, M. A. Microfabrication in biology and medicine. Annu. Rev. Biomed. Eng. 1, 401–425 (1999).

    Google Scholar 

  138. Erdem, O., Es, I., Akceoglu, G. A., Saylan, Y. & Inci, F. Recent advances in microneedle-based sensors for sampling, diagnosis and monitoring of chronic diseases. Biosensors 11, 296 (2021).

    Google Scholar 

  139. Goud, K. Y. et al. Wearable electrochemical microneedle sensor for continuous monitoring of levodopa: toward parkinson management. ACS Sens. 4, 2196–2204 (2019).

    Google Scholar 

  140. Windmiller, J. R. et al. Microneedle array-based carbon paste amperometric sensors and biosensors. Analyst 136, 1846–1851 (2011).

    Google Scholar 

  141. Zhang, B. L., Yang, Y., Zhao, Z. Q. & Guo, X. D. A gold nanoparticles deposited polymer microneedle enzymatic biosensor for glucose sensing. Electrochim. Acta 358, 136917 (2020).

    Google Scholar 

  142. Kim, J. et al. Individually-addressable composite microneedle electrode array by mold-and-place method for glucose detection. Sens. Actuator B Chem. 401, 134884 (2024).

    Google Scholar 

  143. Rigo, B. et al. Soft implantable printed bioelectronic system for wireless continuous monitoring of restenosis. Biosens. Bioelectron. 241, 115650 (2023).

    Google Scholar 

  144. Kim, Y., Chica-Carrillo, E. C. & Lee, H. J. Microfabricated sensors for non-invasive, real-time monitoring of organoids. Micro Nano Syst. Lett. 12, 26 (2024).

    Google Scholar 

  145. An, J. et al. Drug evaluation of parkinson’s disease patient-derived midbrain organoids using mesoporous Au nanodot-patterned 3D concave electrode. ACS Sens. 9, 3573–3580 (2024).

    Google Scholar 

  146. Chang, A.-Y. et al. Dopamine sensing with robust carbon nanotube implanted polymer micropillar array electrodes fabricated by coupling micromolding and infiltration coating processes. Electrochim. Acta 368, 137632 (2021).

    Google Scholar 

  147. Wang, C. et al. Monitoring of the central blood pressure waveform via a conformal ultrasonic device. Nat. Biomed. Eng. 2, 687–695 (2018).

    Google Scholar 

  148. Wang, X., Yoon, E. & Meng, E. A microfabricated nanobubble-based sensor for physiological pressure monitoring. J. Microelectromech. Syst. 32, 542–551 (2023).

    Google Scholar 

  149. Mariello, M. et al. Wireless, battery-free, and real-time monitoring of water permeation across thin-film encapsulation. Nat. Commun. 15, 7443 (2024).

    Google Scholar 

  150. Dion, G. et al. In-sensor human gait analysis with machine learning in a wearable microfabricated accelerometer. Commun. Eng. 3, 48 (2024).

    Google Scholar 

  151. Ali, M. A., Hu, C., Yttri, E. A. & Panat, R. Recent advances in 3D printing of biomedical sensing devices. Adv. Funct. Mater. 32, 2107671 (2022).

    Google Scholar 

  152. Parupelli, S. K. & Desai, S. The 3D printing of nanocomposites for wearable biosensors: recent advances, challenges, and prospects. Bioengineering 11, 32 (2023).

    Google Scholar 

  153. Silva, L. R. G. et al. Electrochemical Biosensors 3D printed by fused deposition modeling: actualities, trends, and challenges. Biosensors 15, 57 (2025).

    Google Scholar 

  154. Yi, Q. et al. All-3D-printed, flexible, and hybrid wearable bioelectronic tactile sensors using biocompatible nanocomposites for health monitoring. Adv. Mater. Technol. 7, 2101034 (2021).

    Google Scholar 

  155. Yi, Q. et al. A self-powered triboelectric MXene-based 3D-printed wearable physiological biosignal sensing system for on-demand, wireless, and real-time health monitoring. Nano Energy 101, 107511 (2022).

    Google Scholar 

  156. Mandal, A., Morali, A., Skorobogatiy, M. & Bodkhe, S. 3D printing of polyvinylidene fluoride-based piezoelectric sensors for noninvasive continuous blood pressure monitoring. Adv. Eng. Mater. 26. https://doi.org/10.1002/adem.202301292 (2023).

  157. Sel, K. et al. Continuous cuffless blood pressure monitoring with a wearable ring bioimpedance device. npj Digit. Med. 6, 59 (2023).

    Google Scholar 

  158. Ma, C. et al. 3D-printing of conductive inks based flexible tactile sensor for monitoring of temperature, strain and pressure. J. Manuf. Process 87, 1–10 (2023).

    Google Scholar 

  159. Chen, X. et al. Fast-response non-contact flexible humidity sensor based on direct-writing printing for respiration monitoring. Biosensors 13, 792 (2023).

    Google Scholar 

  160. Li, J.-W., Lee, J. C.-M., Chuang, K.-C. & Chiu, C.-W. Photocured, highly flexible, and stretchable 3D-printed graphene/polymer nanocomposites for electrocardiography and electromyography smart clothing. Prog. Org. Coat. 176, 107378 (2023).

    Google Scholar 

  161. Gopinath, S. C. & Ramli, M. M. Hybrid-Nanomaterials: Fabrication, Characterization and Applications (Springer Nature, 2024).

  162. Vargas-Bernal, R. in Hybrid Nanomaterials – Flexible Electronics Materials (eds Vargas-Bernal, R., He, P., & Zhang, S.) (IntechOpen, 2020).

  163. Mahato, K. et al. Hybrid multimodal wearable sensors for comprehensive health monitoring. Nat. Electron. 7, 735–750 (2024).

    Google Scholar 

  164. Ryu, W. M., Lee, Y., Son, Y., Park, G. & Park, S. Thermally drawn multi-material fibers based on polymer nanocomposite for continuous temperature sensing. Adv. Fiber Mater. 5, 1712–1724 (2023).

    Google Scholar 

  165. Li, T. et al. An integrated and conductive hydrogel-paper patch for simultaneous sensing of chemical-electrophysiological signals. Biosens. Bioelectron. 198, 113855 (2022).

    Google Scholar 

  166. Zhang, S. et al. On-skin ultrathin and stretchable multifunctional sensor for smart healthcare wearables. npj Flex. Electron. 6, 11 (2022).

    Google Scholar 

  167. Shirzaei Sani, E. et al. A stretchable wireless wearable bioelectronic system for multiplexed monitoring and combination treatment of infected chronic wounds. Sci. Adv. 9, eadf7388 (2023).

    Google Scholar 

  168. Deng, Y. et al. A soft thermal sensor for the continuous assessment of flow in vascular access. Nat. Commun. 16, 38 (2025).

    Google Scholar 

  169. Pan, S. et al. Mechanically interlocked hydrogel–elastomer hybrids for on-skin electronics. Adv. Funct. Mater. 30, 1909540 (2020).

    Google Scholar 

  170. Chaudhary, S., Agarwal, A., Mishra, D. & Shah, S. A review on green communication for wearable and implantable wireless body area networks. Comput. Netw. 252, 110693 (2024).

    Google Scholar 

  171. Waly, M. I. et al. Optimization of a compact wearable LoRa patch antenna for vital sign monitoring in wban medical applications using machine learning. IEEE Access 12, 103860–103879 (2024).

    Google Scholar 

  172. Cong, C. et al. Self-powered strain sensing devices with wireless transmission: DIW-printed conductive hydrogel electrodes featuring stretchable and self-healing properties. J. Colloid Interface Sci. 678, 588–598 (2025).

    Google Scholar 

  173. Ma, X. et al. A monolithically integrated in-textile wristband for wireless epidermal biosensing. Sci. Adv. 9, eadj2763 (2023).

    Google Scholar 

  174. Kim, T. et al. Spider-inspired tunable mechanosensor for biomedical applications. npj Flex. Electron. 7, 12 (2023).

    Google Scholar 

  175. Rauf, S. et al. Fully screen-printed and gentle-to-skin wet ECG electrodes with compact wireless readout for cardiac diagnosis and remote monitoring. ACS Nano 18, 10074–10087 (2024).

    Google Scholar 

  176. Zhang, Z. et al. Thermoresponsive dynamic wet-adhesive epidermal interface for motion-robust multiplexed sweat biosensing. Biosens. Bioelectron. 290, 117949 (2025).

    Google Scholar 

  177. del Bosque, A. et al. Highly flexible strain sensors based on CNT-reinforced ecoflex silicone rubber for wireless facemask breathing monitoring via bluetooth. ACS Appl. Polym. Mater. 5, 8589–8599 (2023).

    Google Scholar 

  178. Xiao, G. et al. Weavable yarn-shaped supercapacitor in sweat-activated self-charging power textile for wireless sweat biosensing. Biosens. Bioelectron. 235, 115389 (2023).

    Google Scholar 

  179. Herbert, R., Lim, H.-R., Rigo, B. & Yeo, W.-H. Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8, eabm1175 (2022).

    Google Scholar 

  180. Yeh, C.-C., Lo, S.-H., Xu, M.-X. & Yang, Y.-J. Fabrication of a flexible wireless pressure sensor for intravascular blood pressure monitoring. Microelectron. Eng. 213, 55–61 (2019).

    Google Scholar 

  181. Stauffer, F. et al. Soft electronic strain sensor with chipless wireless readout: toward real-time monitoring of bladder volume. Adv. Mater. Technol. 3, 1800031 (2018).

    Google Scholar 

Download references