References
-
Halima, N. B. Poly(vinyl alcohol): review of its promising applications and insights into biodegradation. RSC Adv. 6 (46), 39823–39832 (2016).
-
Leja, K. & Lewandowicz, G. Polymer biodegradation and biodegradable polymers – a review. Pol. J. Environ. Stud. 19 (2), 255–266 (2010).
-
Klomklang, W. et al. Biochemical and molecular characterization of a periplasmic hydrolase for oxidized Polyvinyl alcohol from Sphingomonas sp. strain 113P3. Microbiology 151 (Pt 4), 1255–1262 (2005).
-
Belay, M. Review on physicochemical modification of biodegradable plastic: Focus on agar and polyvinyl alcohol (PVA). Adv Mater Sci Eng. 2023, 4056020 (2023).
-
Tournier, V. et al. Enzymes’ power for plastics degradation. Chem. Rev. 123 (9), 5612–5701 (2023).
-
Wei, Y. et al. Bioinformatics analysis and characterization of highly efficient Polyvinyl alcohol (PVA)-degrading enzymes from the novel PVA degrader Stenotrophomonas rhizophila QL-P4. Appl. Environ. Microbiol. 84 (1), e01898–e01817. https://doi.org/10.1128/aem (2018).
-
Mohod, A. V. & Gogate, P. R. Ultrasonic degradation of polymers: effect of operating parameters and intensification using additives for carboxymethyl cellulose (CMC) and Polyvinyl alcohol (PVA). Ultrason. Sonochem. 18 (3), 727–734 (2011).
-
Sun, W., Tian, J., Chen, L., He, S. & Wang, J. Improvement of biodegradability of PVA-containing wastewater by ionizing radiation pretreatment. Environ Sci. Pollut Res 19(8), 3178-3184 (2012).
-
Sakai, K., Hamada, N. & Watanabe, Y. Degradation mechanism of poly(vinyl alcohol) by successive reactions of secondary alcohol oxidase and β-Diketone hydrolase from Pseudomonas Sp. Agric. Biol. Chem. 50 (4), 989–996 (1986).
-
Suzuki, T., Ichihara, Y., Yamada, M. & Tonomura, K. Some characteristics of Pseudomonas0-3 which utilizes polyvinyl alcohol. Agric. Biol. Chem. 37(4), 747–756 (1973).
-
El-Naas, M. H., Mourad, A. H. & Surkatti, R. Evaluation of the characteristics of Polyvinyl alcohol (PVA) as matrices for the immobilization of Pseudomonas putida. Int. Biodeterior. Biodegrad 85, 413–420 (2013).
-
Qian, D., Du, G. & Chen, J. Isolation and culture characterization of a new Polyvinyl alcohol-degrading strain: Penicillium sp. WSH02-21. World J. Microbiol Biotechnol. 20 (6), 587–591 (2004).
-
Yamatsu, A., Matsumi, R., Atomi, H. & Imanaka, T. Isolation and characterization of a novel poly(vinyl alcohol)-degrading bacterium, Sphingopyxis sp. PVA3. Appl. Microbiol. Biotechnol. 72 (4), 804–811 (2006).
-
Shimao, M., Tamogami, T., Kishida, S. & Harayama, S. The gene PvaB encodes oxidized polyvinyl alcohol hydrolase of Pseudomonas sp. strain VM15C and forms an operon with the polyvinyl alcohol dehydrogenase gene PvaA. Microbiology 146(3), 649–657 (2000).
-
Matsumura, S., Tomizawa, N., Toki, A., Nishikawa, K. & Toshima, K. Novel poly(vinyl alcohol)-degrading enzyme and the degradation mechanism. Macromolecules 32(23), 7753–7761 (1999).
-
Bian, H. et al. Biodegradation of Polyvinyl alcohol using cross-linked enzyme aggregates of degrading enzymes from Bacillus niacini. Int. J. Biol. Macromol. 124, 10–16 (2019).
-
Kawai, F. & Hu, X. Biochemistry of microbial polyvinyl alcohol degradation. Appl. Microbiol. Biotechnol. 84(2), 227–237 (2009).
-
Hu, X., Mamoto, R., Shimomura, Y., Kimbara, K. & Kawai, F. Cell surface structure enhancing uptake of Polyvinyl alcohol (PVA) is induced by PVA in the PVA-utilizing Sphingopyxis sp. strain 113P3. Arch. Microbiol. 188 (3), 235–241 (2007).
-
von Haugwitz, G. et al. Synthesis of modified poly (vinyl alcohol) s and their degradation using an enzymatic cascade. Angew Chem. Int. Ed. https://doi.org/10.1002/anie.202216962 (2023).
-
Yang, Y. et al. Expression and fermentation optimization of oxidized polyvinyl alcohol hydrolase in E. coli. J. Ind. Microbiol. Biotechnol. 39(1), 99–104 (2012).
-
Yang, Y. et al. Structural insights into enzymatic degradation of oxidized polyvinyl alcohol. ChemBioChem 15, 1882–1886 (2014).
-
Hu, X. et al. The Pva Operon is located on the megaplasmid of Sphingopyxis sp. strain 113P3 and is constitutively expressed, although expression is enhanced by PVA. Appl. Microbiol. Biotechnol. 78 (4), 685–693 (2008).
-
Tang, X. et al. The optimization of preparations of competent cells for transformation of E. coli. Nucleic Acids Res. 22 (14), 2857–2858 (1994).
-
Froger, A. & Hall, J. E. Transformation of plasmid Dna into E. coli using the heat shock method. Vis Exp 6, e253 (2007).
-
Finley, J. H. Spectrophotometric determination of polyvinyl alcohol in paper coatings. Anal. Chem. 33(12), 1925–1927 (1961).
-
Cohen, S. N., Chang, A. C. Y., Boyer, H. W. & Leslie, H. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. U S A. 69 (8), 2110–2114 (1972).
-
Heller, M. & Hanahan, D. J. Erythrocyte membrane-bound enzymes ATPase, phosphatase and adenylate kinase in human, bovine and porcine erythrocytes. Biochim. Et Biophys. Acta (BBA)-Biomembranes 255(1), 239–250 (1972).
-
Thamwiriyasati, N., Powthongchin, B., Kittiworakarn, J., Katzenmeier, G. & Angsuthanasombat, C. Esterase activity of Bordetella pertussis CyaC-acyltransferase against synthetic substrates: implications for catalytic mechanism in vivo. FEMS Microbiol. Lett. 304(2), 183–190 (2010).
-
Bugnon, M. et al. SwissDock 2024: major enhancements for small-molecule docking with attracting cavities and AutoDock Vina. Nucleic Acids Res. 52(W1), W324–W332 (2024).
-
Röhrig, U. F., Goullieux, M., Bugnon, M. & Zoete, V. Attracting cavities 2.0: improving the flexibility and robustness for small-molecule docking. J. Chem. Inf. Model. 63(12), 3925–3940 (2023).
-
Varadi, M. et al. AlphaFold protein structure database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 50 (D1), D439–D444 (2022).
-
Jumper, J. et al. Highly accurate protein structure prediction with alphafold. Nature 596 (7873), 583–589 (2021).
-
Almagro Armenteros, J. J. et al. SignalP 5.0 improves signal peptide predictions using deep neural networks. Nat. Biotechnol. 37 (4), 420–423 (2019).
-
Elmi, F. et al. Stereoselective esterase from Pseudomonas putida IFO12996 reveals α/β hydrolase folds for D-β-acetylthioisobutyric acid synthesis. J. Bacteriol. 187(24), 8470–8476 (2005).
-
Hameleers, L. et al. Polysaccharide utilization loci-driven enzyme discovery reveals BD-FAE: A bifunctional feruloyl and acetyl xylan esterase active on complex natural xylans. Biotechnol. Biofuels 14(1), 127 (2021).
-
Zhang, R., Zhang, S., Li, C., Cui, B. & Zhou, D. Transboundary intercellular communication mechanisms in the treatment of Polyvinyl alcohol (PVA) wastewater by Geotrichum candidum enhanced activated sludge. Water Res. 57 (12), 12345–12356 (2025).
-
Yan, N. Structural biology of the major facilitator superfamily transporters. Annu. Rev. Biophys. 44, 257–283 (2015).
-
Pacelli, C. et al. Survival and redox activity of Friedmanniomyces endolithicus, an Antarctic endemic black meristematic fungus, after gamma rays exposure. Fungal Biol. 122 (12), 1222–1227 (2018).
-
Pacelli, C. et al. The effect of protracted X-ray exposure on cell survival and metabolic activity of fast and slow growing fungi capable of melanogenesis. Environ. Microbiol. Rep. 10 (3), 255–263 (2018).
-
Koma, D. et al. Chromosome engineering to generate plasmid-free phenylalanine- and tyrosine-overproducing Escherichia coli strains that can be applied in the generation of aromatic-compound-producing bacteria. Appl. Environ. Microbiol. 86 (14), e00525–e00520. https://doi.org/10.1128/aem.00525-20 (2020).
-
Schuster, L. A. & Reisch, C. R. Plasmids for controlled and tunable high-level expression in E. coli. Appl. Environ. Microbiol. 88 (22), e00922–e00939. https://doi.org/10.1128/aem.00939-22 (2022).
-
López, J. et al. Build your bioprocess on a solid strain—β-carotene production in recombinant Saccharomyces cerevisiae. Front Bioeng. Biotech 7, 171 (2019).
-
Wang, J. et al. Rational multienzyme architecture design with iMARS. Cell 188 (5), 1349–1362. https://doi.org/10.1016/j.cell.2024.12.029 (2025).
-
Yang, Y., Liu, L., Li, J., Du, G. & Chen, J. Biochemical characterization and high-level production of oxidized Polyvinyl alcohol hydrolase from Sphingopyxis sp. 113P3 expressed in Methylotrophic Pichia pastoris. Bioprocess. Biosyst Eng. 37 (5), 777–782 (2014).
-
Holmquist, M. Alpha beta-hydrolase fold enzymes structures, functions and mechanisms. Curr Protein Pept. Sc. 1 (2), 209–235 (2000).
-
Komiya, D. et al. Crystal structure and substrate specificity modification of acetyl xylan esterase from Aspergillus luchuensis. Appl. Environ. Microbiol. 83, e01251–e01217. https://doi.org/10.1128/AEM.01251-17 (2017).
-
Tournier, V. et al. An engineered PET depolymerase to break down and recycle plastic bottles. Nature 580(7802), 216–219 (2020).
-
Davidson, A. L., Dassa, E., Orelle, C. & Chen, J. Structure, function, and evolution of bacterial ATP-binding cassette systems. Microbiol. Mol. Biol. Rev. 72 (2), 317–364 (2008).
-
Berlemont, R. The supragenic organization of glycoside hydrolase encoding genes reveals distinct strategies for carbohydrate utilization in bacteria. F Microbiol. 14, 1179206 (2023).
-
Barba-Cedillo, V. & Montanier, C. Y. Effect of multimodularity and spatial organization of glycoside hydrolases on catalysis. Essays Biochem. 67(3), 629–638 (2023).
