Flemming, H.-C. & Wuertz, S. Bacteria and archaea on Earth and their abundance in biofilms. Nat. Rev. Microbiol. 17, 247–260 (2019).
Kost, C., Patil, K. R., Friedman, J., Garcia, S. L. & Ralser, M. Metabolic exchanges are ubiquitous in natural microbial communities. Nat. Microbiol. 8, 2244–2252 (2023).
Wang, M. et al. Enhanced anaerobic wastewater treatment by a binary electroactive material: pseudocapacitance/conductance-mediated microbial interspecies electron transfer. Environ. Sci. Technol. 57, 12072–12082 (2023).
Raghoebarsing, A. A. et al. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature 440, 918–921 (2006).
Zhao, C. et al. Metabolite cross-feeding promoting NADH production and electron transfer during efficient SMX biodegradation by a denitrifier and S. oneidensis MR-1 in the presence of nitrate. Environ. Sci. Technol. 57, 18306–18316 (2023).
D’Souza, G. et al. Ecology and evolution of metabolic cross-feeding interactions in bacteria. Nat. Prod. Rep. 35, 455–488 (2018).
Liu, X. et al. Syntrophic interspecies electron transfer drives carbon fixation and growth by Rhodopseudomonas palustris under dark, anoxic conditions. Sci. Adv. 7, eabh1852 (2021).
Tsoi, R. et al. Metabolic division of labor in microbial systems. Proc. Natl Acad. Sci. USA 115, 2526–2531 (2018).
Ren, S. et al. Hydrochar-facilitated anaerobic digestion: Evidence for direct interspecies electron transfer mediated through surface oxygen-containing functional groups. Environ. Sci. Technol. 54, 5755–5766 (2020).
Zhang, P., Zhang, J., Zhang, T., Zhang, L. & He, Y. Zero-valent iron enhanced methane production of anaerobic digestion by reinforcing microbial electron bifurcation coupled with direct inter-species electron transfer. Water Res. 255, 121428 (2024).
Sokolovskaya, O. M., Shelton, A. N. & Taga, M. E. Sharing vitamins: cobamides unveil microbial interactions. Science 369, eaba0165 (2020).
Nikaido, H. & Saier, M. H. Jr Transport proteins in bacteria: common themes in their design. Science 258, 936–942 (1992).
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).
Cowan, S. et al. The structure of OmpF porin in a tetragonal crystal form. Structure 3, 1041–1050 (1995).
Fritts, R. K., McCully, A. L. & McKinlay, J. B. Extracellular metabolism sets the table for microbial cross-feeding. Microbiol. Mol. Bio. Rev. 85, e00135–20 (2021).
Kong, L. et al. Cross-feeding between filamentous cyanobacteria and symbiotic bacteria favors rapid photogranulation. Environ. Sci. Technol. 57, 16953–16963 (2023).
Pronk, M. et al. Full scale performance of the aerobic granular sludge process for sewage treatment. Water Res. 84, 207–217 (2015).
Zhou, Y. et al. Mass flow and metabolic pathway of nonaeration greywater treatment in an oxygenic microalgal–bacterial biofilm. Environ. Sci. Technol. 58, 534–544 (2023).
Wang, Y., Gao, H. & Wells, G. F. Integrated omics analyses reveal differential gene expression and potential for cooperation between denitrifying polyphosphate and glycogen accumulating organisms. Environ. Microbiol. 23, 3274–3293 (2021).
Cheng, C. et al. Electricity-enhanced anaerobic, non-photosynthetic mixotrophy by Clostridium carboxidivorans with increased carbon efficiency and alcohol production. Energy Convers. Manage. 252, 115118 (2022).
Li, F. et al. Modular engineering to increase intracellular NAD(H/+) promotes rate of extracellular electron transfer of Shewanella oneidensis. Nat. Commun. 9, 3637 (2018).
Wirth, S. & Dürre, P. Investigation of putative genes for the production of medium-chained acids and alcohols in autotrophic acetogenic bacteria. Metab. Eng. 66, 296–307 (2021).
Shen, S. et al. Effect of temperature and surfactant on biomass growth and higher-alcohol production during syngas fermentation by Clostridium carboxidivorans P7. Bioresour. Bioprocess. 7, 1–13 (2020).
Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968–3973 (2008).
Waldrop, G. L., Holden, H. M. & Maurice, M. S. The enzymes of biotin dependent CO2 metabolism: what structures reveal about their reaction mechanisms. Protein Sci. 21, 1597–1619 (2012).
Appel, A. M. et al. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113, 6621–6658 (2013).
Liu, Z., Wang, K., Chen, Y., Tan, T. & Nielsen, J. Third-generation biorefineries as the means to produce fuels and chemicals from CO2. Nat. Catal. 3, 274–288 (2020).
Waters, C. M. & Bassler, B. L. Quorum sensing: cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).
Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17, 371–382 (2019).
Abraham, M. J. et al. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).
Tombola, R., Buttiglieri, G., Auset, M. & Gonzalez-Olmos, R. Recycled corrugated wire hose cover as biological carriers for greywater treatment in a sequential batch biofilm reactor. J. Environ. Manage. 240, 475–484 (2019).
Yang, X., Zhou, Y., Zhang, L., Benally, C. & Liu, Y. Enhanced biofilm formation and municipal wastewater treatment efficiency using granular activated carbon modified bio-ball carriers in moving bed biofilm reactor. Bioresour. Technol. 435, 132947 (2025).
Li, Y. et al. Microbial engineering for the production of C2–C6 organic acids. Nat. Prod. Rep. 38, 1518–1546 (2021).
Hoff, B. et al. Unlocking nature’s biosynthetic power—metabolic engineering for the fermentative production of chemicals. Angew. Chem. Int. Ed. 60, 2258–2278 (2020).
Dueholm, M. K. D. et al. MiDAS 4: A global catalogue of full-length 16S rRNA gene sequences and taxonomy for studies of bacterial communities in wastewater treatment plants. Nat. Commun. 13, 1908 (2022).
Ye, J. et al. Wastewater denitrification driven by mechanical energy through cellular piezo-sensitization. Nat. Water 2, 531–540 (2024).
Ravishankara, A., Daniel, J. S. & Portmann, R. W. Nitrous oxide (N2O): the dominant ozone-depleting substance emitted in the 21st century. Science 326, 123–125 (2009).
Canfield, D. E., Glazer, A. N. & Falkowski, P. G. The evolution and future of Earth’s nitrogen cycle. Science 330, 192–196 (2010).
Zhang, W., Guan, A., Peng, Q., Qi, W. & Qu, J. Microbe-mediated simultaneous nitrogen reduction and sulfamethoxazole/N-acetylsulfamethoxazole removal in lab-scale constructed wetlands. Water Res. 242, 120233 (2023).
Choe, D. et al. Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat. Commun. 10, 935 (2019).
Moon, E. C. et al. Physiological cost of antibiotic resistance: insights from a ribosome variant in bacteria. Sci. Adv. 10, eadq5249 (2024).
Hu, G. et al. Light-driven CO2 sequestration in Escherichia coli to achieve theoretical yield of chemicals. Nat. Catal. 4, 395–406 (2021).
Cui, W. et al. Gut microbial metabolite facilitates colorectal cancer development via ferroptosis inhibition. Nat. Cell Biol. 26, 124–137 (2024).
Cooper, R. E. et al. Iron is not everything: Unexpected complex metabolic responses between iron–cycling microorganisms. ISME J 14, 2675–2690 (2020).
Lindorff-Larsen, K. et al. Improved side-chain torsion potentials for the Amber ff99SB protein force field. J. Comput. Chem. 78, 1950–1958 (2010).
Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a General Amber Force Field. J. Comput. Chem. 25, 1157–1174 (2004).
Eberhardt, J., Santos-Martins, D., Tillack, A. F. & Forli, S. AutoDock Vina 1.2. 0: new docking methods, expanded force field, and Python bindings. J. Comput. Chem. 61, 3891–3898 (2021).
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H. & Kollman, P. A. The weighted histogram analysis method for free-energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).
