Meta-analysis of extremotolerant microbes to address nutrient deficiencies in bioregenerative life support systems during Deep-space Missions

meta-analysis-of-extremotolerant-microbes-to-address-nutrient-deficiencies-in-bioregenerative-life-support-systems-during-deep-space-missions
Meta-analysis of extremotolerant microbes to address nutrient deficiencies in bioregenerative life support systems during Deep-space Missions

References

  1. Oluwafemi, F. A. et al. Space food and nutrition in a long term manned mission. Proceedings of the International Astronautical Congress, IAC 2018-October, 1–21 (2018).

  2. Smith, S. M., Zwart, S. R., Block, G., Rice, B. L. & Davis-Street, J. E. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station. J. Nutr. 135, 437–43 (2005).

  3. Vernikos, J., Walter, N., Worms, J. C. & Blanc, S. Theseus: The European research priorities for human exploration of space. NPJ Microgravity 2, 16034 (2016).

  4. Tang, H., Rising, H. H., Majji, M. & Brown, R. D. Long-Term Space Nutrition: A Scoping Review. Nutrients 14, 194 (2021).

    Google Scholar 

  5. Sagan, C. Pale Blue Dot: A Vision of the Human Future in Space. (Random House, 1994).

  6. Salotti, J. M. Minimum Number of Settlers for Survival on Another Planet. Sci. Rep. 10, (2020).

  7. Marin, F. & Beluffi, C. Computing the minimal crew: For a multi-generational space journey towards Proxima Centauri b. JBIS – J. Br. Interplanetary Soc. 71, 45–52 (2018).

  8. Berliner, A. J. et al. Towards a Biomanufactory on Mars. Front. Astronomy Space Sci. 8, 711550 (2021).

  9. MELiSSA Foundation. The MELiSSA Project. https://www.melissafoundation.org/page/melissa-project.

  10. CUBES. Center for the Utilization of Biological Engineering in Space (CUBES). https://cubes.space/.

  11. Alemany, L. et al. Continuous controlled long-term operation and modeling of a closed loop connecting an air-lift photobioreactor and an animal compartment for the development of a life support system. Biochem Eng. J. 151, 107323 (2019).

    Google Scholar 

  12. Vermeulen, A. C. J., Hubers, C., de Vries, L. & Brazier, F. What horticulture and space exploration can learn from each other: The Mission to Mars initiative in the Netherlands. Acta Astronaut 177, 421–424 (2020).

  13. Serge Pieters (IPL). TN 98.3.21 – Review of Modelling Issues Related to Higher Plant Metabolism, Identification of Critical Points and Proposed Method (2011). https://www.melissafoundation.org/download/809 (2011).

  14. Ewert, M. K., Chen, T. T. & Powell, C. D. Life Support Baseline Values and Assumptions Document. http://www.sti.nasa.gov (2022).

  15. Chunxiao, X. & Hong, L. Crop candidates for the bioregenerative life support systems in China. Acta Astronaut 63, 1076–1080 (2008).

    Google Scholar 

  16. Masuda, T. et al. DEVELOPMENT OF A 1-WEEK CYCLE MENU FOR AN ADVANCED LIFE SUPPORT SYSTEM (ALSS) UTILIZING PRACTICAL BIOMASS PRODUCTION DATA FROM THE CLOSED ECOLOGY EXPERIMENT FACILITIES (CEEF). Habitation 10, www.cognizantcommunication.com (2005).

  17. Dueck, T., Kempkes, F., Meinen, E. & Stanghellini, C. Choosing Crops for Cultivation in Space. (2016).

  18. Agureev, A. N. et al. Nutritional status in the experiment with 105-day isolation as the first phase of the Mars-500 project. Hum. Physiol. 43, 793–801 (2017).

    Google Scholar 

  19. Hao, Z., Li, L., Fu, Y. & Liu, H. The influence of bioregenerative life-support system dietary structure and lifestyle on the gut microbiota: A 105-day ground-based space simulation in Lunar Palace 1. Environ. Microbiol 20, 3643–3656 (2018).

    Google Scholar 

  20. Ellena, G. et al. Microbial supplements for extraterrestrial environments. ScienceOpen Posters https://doi.org/10.14293/P2199-8442.1.SOP-.PFDUFP.v1 (2024).

  21. Herforth, A. et al. A global review of food-based dietary guidelines. Adv. Nutr. 10, 590–605 (2019).

    Google Scholar 

  22. Sakkas, H. et al. Nutritional status and the influence of the vegan diet on the gut microbiota and human health. Medicina 56, 88 (2020).

    Google Scholar 

  23. Marco, M.L. et al. Health benefits of fermented foods: microbiota and beyond. Current Opinon in Biotechnology. 44, 94–102 (2017).

  24. Ouwehand, A. C. & Vesterlund, S. Health aspects of probiotics. IDrugs 6, 573–580 (2003).

    Google Scholar 

  25. Breuer, U. & Harms, H. Debaryomyces hansenii – An extremophilic yeast with biotechnological potential. Yeast 23, 415–437 (2006).

  26. Spacova, I. et al. Development of a live biotherapeutic throat spray with lactobacilli targeting respiratory viral infections. Micro Biotechnol. 16, 99–115 (2023).

    Google Scholar 

  27. Spacova, I. et al. Spontaneous Riboflavin-Overproducing Limosilactobacillus reuteri for Biofortification of Fermented Foods. Front Nutr. 9, 916607 (2022).

  28. Suva, M., Sureja, V. & Kheni, D. Novel insight on probiotic Bacillus subtilis: Mechanism of action and clinical applications. J. Curr. Res. Sci. Med. 2, 65 (2016).

    Google Scholar 

  29. Matassa, S., Boon, N., Pikaar, I. & Verstraete, W. Microbial protein: future sustainable food supply route with low environmental footprint. Microb. Biotechnol. 9, 568–75 (2016).

  30. Ye, J. W. et al. Synthetic biology of extremophiles: a new wave of biomanufacturing. Trends Biotechnol. 41, 342–357 (2023).

    Google Scholar 

  31. Tamang, J. P., Shin, D. H., Jung, S. J. & Chae, S. W. Functional properties of microorganisms in fermented foods. Front. Microbiol. 7, 578 (2016).

  32. Merino, N. et al. Living at the extremes: Extremophiles and the limits of life in a planetary context. Front. Microbiol. 10, 780 (2019).

  33. Kanekar, P. P. & Kanekar, S. P. Diversity and Biotechnology of Extremophilic Microorganisms from India. 41, (Springer Nature Singapore, 2022).

  34. Mota, A., Koch, S., Matthiae, D., Santos, N. & Cortesão, M. How Habitable Are M Dwarf Exoplanets? Modeling Surface Conditions and Exploring the Role of Melanins in the Survival of Aspergillus niger Spores Under Exoplanet-Like Radiation. Astrobiology 25, 161–176 (2025).

  35. Vreeland, R. H. Advances in Understanding the Biology of Halophilic Microorganisms. Advances in Understanding the Biology of Halophilic Microorganisms (Springer Netherlands, 2012). https://doi.org/10.1007/978-94-007-5539-0.

  36. Guan, N. & Liu, L. Microbial response to acid stress: mechanisms and applications. Appl Microbiol Biotechnol. 104, 51–65 (2020).

    Google Scholar 

  37. Gabriele Ellena, R. S. & et al., A. M. The potential role of extremophiles as food supplements in extraterrestrial bioscience engineering. ScienceOpen Posters (2024) https://doi.org/10.14293/P2199-8442.1.SOP-.PFWJN5.v1.

  38. Ellena, G. et al. Development and implementation of a simulated microgravity setup for edible cyanobacteria. NPJ Microgravity 10, 99 (2024).

    Google Scholar 

  39. Fu, Y., Guo, R. & Liu, H. An optimized 4-day diet meal plan for ‘Lunar Palace 1’. J. Sci. Food Agric 99, 696–702 (2019).

    Google Scholar 

  40. Weihreter, M., Brunet, J., Vanderstraeten, S.-D., Van, D. & Straeten, D. TN 98.1.1 – Elaboration of System Requirements for a FFPS Issue 2 Revision 0 0 MELiSSA. https://www.melissafoundation.org/download/267 (2010).

  41. Kirchhoff, E. Online-Publication of the German Food Composition Table “Souci–Fachmann–Kraut“ on the Internet. J. FOOD Composition ANAL. – J. FOOD COMPOS ANAL 15, 465–472 (2002).

    Google Scholar 

  42. Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 22. http://www.ars.usda.gov/nutrientdata (2009).

  43. FoodData Central. https://fdc.nal.usda.gov/error.html.

  44. NASA Johnson Space Center. Nutritional Requirements for Exploration Missions up to 365 Days. https://www.nasa.gov/sites/default/files/atoms/files/jsc67378_expl_nutrs_042020_1.pdf (2020).

  45. Joint FAO/WHO Expert Consultation on Human Vitamin & Requirements, M. Vitamin and Mineral Requirements in Human Nutrition. (World Health Organization and Food and Agriculture Organization of the United Nations, Geneva, Switzerland, 2004).

  46. Ajib, F. A. & Childress, J. M. Magnesium Toxicity. in StatPearls [Internet] (StatPearls Publishing, Treasure Island (FL), 2022).

  47. Rout, P. & Jialal, I. Hyperphosphatemia. in StatPearls [Internet] (StatPearls Publishing, Treasure Island (FL), 2023).

  48. Sauer, J., Mason, J. B. & Choi, S. W. Too much folate: A risk factor for cancer and cardiovascular disease?. Curr. Opin. Clin. Nutr. Metab. Care 12, 30–36 (2009).

    Google Scholar 

  49. U.S. Department of Agriculture (USDA), A. R. S. FoodData Central: Foundation Foods. Version Current (2024).

  50. Šola, I., Poljuha, D., Pavicic, I., Jurinjak Tušek, A. & Šamec, D. Climate Change and Plant Foods: The Influence of Environmental Stressors on Plant Metabolites and Future Food Sources. Foods 14, 416 (2025).

  51. Hornick, S. B. Factors affecting the nutritional quality of crops. Am. J. Alternative Agric. 7, 63–68 (1992).

    Google Scholar 

  52. Bakaloudi, D. R. et al. Intake and adequacy of the vegan diet. A systematic review of the evidence. Clin. Nutr. 40, 3503–3521 (2021).

    Google Scholar 

  53. Angeloni, D. et al. ROADMAP #9: Biology in Space and Analogue Environments Contributors in Alphabetical Order: Topics (Cells, Tissues, Molecular Networks): Topic C (Plant Biology).

  54. Blaber, A. et al. ESA SciSpacE White Paper Series – Human Physiology. (2021).

  55. Aliper, A. M. et al. Radioprotectors.org: an open database of known and predicted radioprotectors. Aging 12, 15741–15755 (2020).

    Google Scholar 

  56. Lledó, I. et al. Vitamins and Radioprotective Effect: A Review. Antioxidants 12, 611 (2023).

  57. Fenech, M. F., Bull, C. F. & Van Klinken, B. J. W. Protective Effects of Micronutrient Supplements, Phytochemicals and Phytochemical-Rich Beverages and Foods Against DNA Damage in Humans: A Systematic Review of Randomized Controlled Trials and Prospective Studies. Advances in Nutrition (2023) https://doi.org/10.1016/j.advnut.2023.08.004.

  58. Rampelotto, P. H. Extremophiles and extreme environments. Life 3, 482–485 (2013).

  59. Sun, Y. et al. The Space Environment Activates Capsular Polysaccharide Production in Lacticaseibacillus rhamnosus Probio-M9 by Mutating the wze (ywqD) Gene. Microbiol. Spectr. 11, e04677–22 (2023).

  60. s10438-005-0065-x.

  61. Su, X. et al. Effects of short-term exposure to simulated microgravity on the physiology of Bacillus subtilis and multiomic analysis. Can. J. Microbiol 69, 464–478 (2023).

    Google Scholar 

  62. Newcombe, D. A. et al. Survival of spacecraft-associated microorganisms under simulated Martian UV irradiation. Appl Environ. Microbiol 71, 8147–8156 (2005).

    Google Scholar 

  63. McCarthy, J.-A. & Damoglou, A. P. The effect of substrate on the radiation resistance of yeasts isolated from sausage meat. Lett. Appl Microbiol 22, 80–84 (1996).

    Google Scholar 

  64. Almada-Érix, C. N. et al. Quantifying the impact of eight unit operations on the survival of eight Bacillus strains with claimed probiotic properties. Food Res. Int. 142, 110191 (2021).

  65. Guesmi, S. et al. Roots of the xerophyte Panicum turgidum host a cohort of ionizing-radiation-resistant biotechnologically-valuable bacteria. Saudi J. Biol. Sci. 29, 1260–1268 (2022).

    Google Scholar 

  66. Senatore, G., Mastroleo, F., Leys, N. & Mauriello, G. Growth of lactobacillus reuteri DSM17938 under two simulated microgravity systems: Changes in reuterin production, gastrointestinal passage resistance, and stress genes expression response. Astrobiology 20, 1–14 (2020).

    Google Scholar 

  67. Cortesão, M. et al. Bacillus subtilis spore resistance to simulated mars surface conditions. Front. Microbiol. 10, 333 (2019).

  68. Smith, S. M., Zwart, S. R., Douglas, G. L. & Heer, M. Human Adaptation to Spaceflight: The Role of Food and Nutrition Second Edition.

  69. Gröber, U., Kisters, K. & Schmidt, J. Neuroenhancement with Vitamin B12-underestimated neurological significance. Nutrients 5, 5031–5045 (2013).

    Google Scholar 

  70. Lang, T. et al. Towards human exploration of space: The THESEUS review series on muscle and bone research priorities. NPJ Micrograv. 3, 8 (2017).

  71. Kovalev, V. S., Manukovsky, N. S. & Tikhomirov, A. A. Computing-feasibility study of NASA nutrition requirements as applied to a bioregenerative life support system. Acta Astronaut 159, 371–376 (2019).

    Google Scholar 

  72. Fahrion, J., Ellena, G., Mastroleo, F., Dussap, C. G. & Leys, N. The influence of different storage conditions on Limnospira indica, a promising candidate for air revitalisation in space. iScience 113499 https://doi.org/10.1016/j.isci.2025.113499 (2025).

  73. Fahrion, J. et al. ARTHROSPIRA-C space flight experiment: Validation of biomass and oxygen production bioprocesses in a space bioreactor prior to upload to space. Acta Astronaut 229, 374–390 (2025).

    Google Scholar 

  74. Tsotetsi, T., Nephali, L., Malebe, M. & Tugizimana, F. Bacillus for Plant Growth Promotion and Stress Resilience: What Have We Learned? Plants 11, 2482 (2022).

  75. Navarrete, C., Estrada, M. & Martínez, J. L. Debaryomyces hansenii: an old acquaintance for a fresh start in the era of the green biotechnology. World J. Microbiol. Biotechnol. 38, 99 (2022).

  76. Balkan Green Energy News. LIQUID3 urban photo-bioreactor installed in Belgrade to combat air pollution. https://balkangreenenergynews.com/liquid-tree-to-combat-air-pollution-in-belgrade/ (2021).

  77. United Nations Development Programme. The first algae air purifier in Serbia. https://www.undp.org/serbia/news/first-algae-air-purifier-serbia (2021).

  78. Santos, F. et al. Effect of amino acid availability on vitamin B12 production in Lactobacillus reuteri. Appl Environ. Microbiol 75, 3930–3936 (2009).

    Google Scholar 

  79. Santos, F., Wegkamp, A., De Vos, W. M., Smid, E. J. & Hugenholtz, J. High-level folate production in fermented foods by the B12 producer Lactobacillus reuteri JCM1112. Appl Environ. Microbiol 74, 3291–3294 (2008).

    Google Scholar 

  80. Thakur, K., Tomar, S. K. & De, S. Lactic acid bacteria as a cell factory for riboflavin production. Micro Biotechnol. 9, 441–451 (2016).

    Google Scholar 

  81. Merdinger, E. & Devine, E. M. Lipids of Debaryomyces Hansenii. J. BACTERIOL. 89 https://journals.asm.org/journal/jb (1965).

  82. Kessi-Pérez, E. I., González, A., Palacios, J. L. & Martínez, C. Yeast as a biological platform for vitamin D production: A promising alternative to help reduce vitamin D deficiency in humans. Yeast 39, 482–492 (2022).

    Google Scholar 

  83. Shurson, G. C. Yeast and yeast derivatives in feed additives and ingredients: Sources, characteristics, animal responses, and quantification methods. Anim. Feed Sci. Technol. 235, 60–76 (2018).

    Google Scholar 

  84. Oraei, M., Hadi Razavi, S. & Khodaiyan, F. Optimization of Effective Minerals on Riboflavin Production by Bacillus Subtilis Subsp. Subtilis ATCC 6051 Using Statistical Designs. vol. 10.

  85. Kuenz, A., Tölle, M. & Bromann, S. Investigations on riboflavin production by wild-type yeast strain for supplementation of organic feed. Org. Agric. 13, 399–410 (2023).

    Google Scholar 

  86. Banerjee Aparna. Bioactive polysaccharides from polyextremophilic bacteria of Deception Island as prospective food additives (INACH Regular RT_24-21). https://www.inach.cl/ciencia-antartica/fondos-concursables-inach/resultados-concursos-inach/ (2021).

  87. USDA Plants Database. https://plants.usda.gov/home.

  88. Darmon, N., Ferguson, E. L. & Briend, A. Impact of a Cost Constraint on Nutritionally Adequate Food Choices for French Women: An Analysis by Linear Programming. J. Nutr. Educ. Behav. 38, 82–90 (2006).

    Google Scholar 

  89. Darmon, N., Ferguson, E. L. & Briend, A. A cost constraint alone has adverse effects on food selection and nutrient density: An analysis of human diets by linear programming. J. Nutr. 132, 3764–71 (2002).

  90. Alaini, R., Rajikan, R. & Elias, S. M. Diet optimization using linear programming to develop low cost cancer prevention food plan for selected adults in Kuala Lumpur, Malaysia. BMC Public Health 19, 546 (2019).

  91. Ferguson, E. L., Darmon, N., Briend, A. & Premachandra, I. M. Food-based dietary guidelines can be developed and tested using linear programming analysis. J. Nutr. 134, 951–7 (2004).

  92. Panel, E. B. Updated list of QPS-recommended microorganisms for safety risk assessments carried out by EFSA. (2025) https://doi.org/10.5281/zenodo.10534041.

  93. R, D. S. F. D. A. & C, P. Algae as food and food supplements in Europe. https://doi.org/10.2760/049515 (2021).

  94. Pinchart, P.-E. et al. The genus Limnospira contains only two species both unable to produce microcystins: L. maxima and L. platensis comb. nov. iScience 27, 110845 (2024).

    Google Scholar 

  95. Gessler, N. N. et al. The physiological adaptation features of the poly-extremophilic yeast yarrowia lipolytica W29 during long-term cultivation. Appl Biochem Microbiol 58, 771–779 (2022).

    Google Scholar 

  96. Wang, D. et al. Comparative physiological and transcriptomic analyses reveal salt tolerance mechanisms of Zygosaccharomyces rouxii. Process Biochem. 82, 59–67 (2019).

    Google Scholar 

  97. Schagerl, M. et al. Testing the purity of limnospira fusiformis cultures after axenicity treatments. Cells 14, 136 (2025).

  98. Sharma, P., Meena, N., Aggarwal, M. & Mondal, A. K. Debaryomyces hansenii, a highly osmo-tolerant and halo-tolerant yeast, maintains activated Dhog1p in the cytoplasm during its growth under severe osmotic stress. Curr. Genet 48, 162–170 (2005).

    Google Scholar 

  99. Masojídek, J. & Torzillo, G. Mass Cultivation of Freshwater Microalgae. in Reference Module in Earth Systems and Environmental Sciences (Elsevier, 2014). https://doi.org/10.1016/B978-0-12-409548-9.09373-8.

  100. Julia, C., Etilé, F. & Hercberg, S. Front-of-pack Nutri-Score labelling in France: an evidence-based policy. The Lancet Public Health 3, e164 (2018).

  101. Dickie, S., Woods, J. L. & Lawrence, M. Analysing the use of the Australian Health Star Rating system by level of food processing. Int. J. Behav. Nutr. Phys. Activity 15, 128 (2018).

  102. Alekhova, T. A. et al. Monitoring of microbial degraders in manned space stations. Appl Biochem Microbiol 41, 382–389 (2005).

    Google Scholar 

  103. Mccarthy’, J.-A. & Darnoglou, A. P. The Effect of Substrate on the Radiation Resistance of Yeasts Isolated from Sausage Meat. Letters in Applied Microbiology vol. 22 (1996).

  104. Heinz, J., Rambags, V. & Schulze-Makuch, D. Physicochemical parameters limiting growth of debaryomyces hansenii in solutions of hygroscopic compounds and their effects on the habitability of martian brines. Life 11, 1194 (2021).

  105. Sansone, C. et al. Isolation of a psychrotolerant Debaryomyces hansenii strain from fermented tea plant (Camellia sinensis) leaves. J. Plant Interact. 2, 169–174 (2007).

    Google Scholar 

  106. Hernández-Saavedra, N. Y. & Ochoa, J. L. Copper-zinc superoxide dismutase from the marine yeast Debaryomyces hansenii. Yeast 15, 657–668 (1999).

    Google Scholar 

  107. García-González, A., Lotz, M. & Ochoa, J. L. García-González A et al. Anti-Inflammatory Activity of Anti-Inflammatory Activity of Superoxide Dismutase Obtained from Debaryomyces Hansenii on Type II Collagen Induced Arthritis in Rats ARTÍCULO ORIGINAL. Revista de Investigación Clínica vol. 61 (2009).

  108. Deasy, P. B., Kuster,’ And, E. & Timoney, R. F. Resistance of Bacillus Subtilis Spores to Inactivation by Gamma Irradiation and Heating in the Presence of a Bactericide II. Factors Affecting Rates of Inactivation by Phenolic Bactericides. APPuED MICROBIOLOGY (1970).

  109. Verseux, C. Resistance of cyanobacteria to space and Mars environments, in the frame of the EXPOSE-R2 space mission and beyond. (2018) https://doi.org/10.13140/RG.2.2.28437.88808.

  110. Leibniz Institute DSMZ-German Collection of Microorganisms & GmbH, C. C. BacDive entry for DSMZ strain 1172. https://doi.org/10.13145/bacdive1172.20250331.9.3 (2024).

  111. Lee, A. H., Rodriguez Jimenez, D. M. & Meisel, M. Limosilactobacillus reuteri – a probiotic gut commensal with contextual impact on immunity. Gut Microbes. 17, 2451088 (2025).

  112. Smythe, P. & Efthimiou, G. In Silico Genomic and Metabolic Atlas of Limosilactobacillus reuteri DSM 20016: An Insight into Human Health. Microorganisms 10, 1341 (2022).

  113. Poughon, L. et al. Limnospira indica PCC8005 growth in photobioreactor: model and simulation of the ISS and ground experiments. Life Sci. Space Res (Amst.) 25, 53–65 (2020).

    Google Scholar 

  114. Fahrion, J., Gupta, S., Mastroleo, F., Dussap, C. G. & Leys, N. Chronic low-dose rate irradiation induces transient hormesis effect on cyanobacterium Limnospira indica. iScience 28, 111891 (2025).

  115. Segers, C. et al. Limnospira indica PCC 8005 or Lacticaseibacillus rhamnosus GG Dietary Supplementation Modulate the Gut Microbiome in Mice. Appl. Microbiol. 2, 636–650 (2022).

    Google Scholar 

  116. Youssef, B. M., Asker, A. A., El-Samahy, S. K. & Swailam, H. M. Combined Effect of Steaming and Gamma Irradiation on the Quality of Mango Pulp Stored at Refrigerated Temperature. www.elsevier.com/locate/foodres.

  117. Tang, X. M., Kayingo, G. & Prior, B. A. Functional analysis of the Zygosaccharomyces rouxii Fps1p homologue. Yeast 22, 571–581 (2005).

    Google Scholar 

  118. Gazso, L. G. & Ponta, C. C. Radiation Inactivation of Bioterrorism Agents. in Radiation Inactivation of Bioterrorism Agents 153–160 (IOS Press, 2004).

  119. Regina Barroso Ruiz Sella, S. et al. BRAZILIAN ARCHIVES OF BIOLOGY AND TECHNOLOGY Lab-Scale Production of Bacillus atrophaeus’ Spores by Solid State Fermentation in Different Types of Bioreactors. Arch. Biol. Technol. v. 52, 159–170 (2009).

    Google Scholar 

  120. Folmsbee, M. J., McInerney, M. J. & Nagle, D. P. Anaerobic growth of Bacillus mojavensis and Bacillus subtilis requires deoxyribonucleosides or DNA. Appl Environ. Microbiol 70, 5252–5257 (2004).

    Google Scholar 

  121. Vaishampayan, P. A., Rabbow, E., Horneck, G. & Venkateswaran, K. J. Survival of Bacillus pumilus Spores for a Prolonged Period of Time in Real Space Conditions. Astrobiology 12, 487–497 (2012).

    Google Scholar 

  122. Parisi, A. & Antoine, A. D. Increased Radiation Resistance of Vegetative Bacillus Pumilus’. APPLE MICROBIOLOGY https://journals.asm.org/journal/am (1974).

  123. BacDive Curators. Bacillus pumilus CCUG 21924 – BacDive ID 143929. Preprint at https://doi.org/10.13145/bacdive143929.20230509.8.1 (2023).

  124. Wang, D. et al. Probiotic properties of a spaceflight-induced mutant lactobacillus plantarum SS18-50 in mice. Endocr. Metab. Immune Disord. Drug Targets 22, 525–531 (2022).

    Google Scholar 

  125. Watanabe, M., van der Veen, S. & Abee, T. Impact of respiration on resistance of lactobacillus plantarum WCFS1 to acid stress. Appl Environ. Microbiol 78, 4062–4064 (2012).

    Google Scholar 

  126. Suo, K. et al. Transcriptomics and proteomics analyses reveal the role of LlrG in ionizing radiation stress resistance of Lactococcus lactis subsp. lactis IL1403. Food Biosci. 68, 106579 (2025).

  127. Brooijmans, R. J. W., Poolman, B., Schuurman-Wolters, G. K., De Vos, W. M. & Hugenholtz, J. Generation of a membrane potential by Lactococcus lactis through aerobic electron transport. J. Bacteriol. 189, 5203–5209 (2007).

    Google Scholar 

  128. Salanski, P., Kowalczyk, M., Bardowski, J. K. & Szczepankowska, A. K. Health-Promoting Nature of Lactococcus lactis IBB109 and Lactococcus lactis IBB417 Strains Exhibiting Proliferation Inhibition and Stimulation of Interleukin-18 Expression in Colorectal Cancer Cells. Front. Microbiol. 13, 822912 (2022).

  129. Coil, D. A. et al. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS). PeerJ 4, e1842 (2016).

  130. Priest, F. G., Goodfellow, M., Shute, L. A. & Berkeley, R. C. W. Bacillus amyloliquefaciens sp. nov., nom. rev. Int J. Syst. Bacteriol. 37, 69–71 (1987).

    Google Scholar 

  131. Kang, J. E. et al. Dietary supplementation with a Bacillus superoxide dismutase protects against γ-radiation-induced oxidative stress and ameliorates dextran sulphate sodium-induced ulcerative colitis in mice. J. Crohns Colitis 12, 860–869 (2018).

    Google Scholar 

  132. Rey, M. W. et al. Open Access Complete Genome Sequence of the Industrial Bacterium Bacillus Licheniformis and Comparisons with Closely Related Bacillus Species. 5, http://genomebiology.com/2004/5/10/R77 (2004).

  133. Feng, S., Meng, C., Hao, Z. & Liu, H. Bacillus licheniformis Reshapes the Gut Microbiota to Alleviate the Subhealth. Nutrients 14, 1642 (2022).

  134. Fialkina, S. V., Deshevaya, E. A., Rakitin, A. L. & Orlov, O. I. Genome Stability of Bacillus velezensis after Two-Year Exposure in Open Space. Mol. Biol. 58, 33–42 (2024).

    Google Scholar 

  135. Sousa, E. G. et al. The research on the identification, taxonomy, and comparative genomics analysis of nine Bacillus velezensis strains significantly contributes to microbiology, genetics, bioinformatics, and biotechnology. Front. Microbiol. 16, (2025).

  136. Liang, X. Structural characterization and bioactivity of exopolysaccharide synthesized by geobacillus sp. TS3-9 isolated from radioactive radon hot spring. Adv. Biotechnol. Microbiol. 4, 555634 (2017).

  137. Daas, M. J. A., Vriesendorp, B., van de Weijer, A. H. P., van der Oost, J. & van Kranenburg, R. Complete genome sequence of geobacillus thermodenitrificans T12, a potential host for biotechnological applications. Curr. Microbiol 75, 49–56 (2018).

    Google Scholar 

  138. Tran, M. T. et al. Draft Genome Sequences of Spacecraft-Associated Microbes Isolated from Six NASA Missions. Microbiol. Resour. Announc. 12, e01011–22 (2023).

  139. Leibniz Institute DSMZ – German Collection of Microorganisms & GmbH, C. C. BacDive strain entry for _Niallia circulans_ CIP 53.60. (2024).

  140. Levinson, H. S. & Hyatt2, M. T. SOME EFFECTS OF HEAT AND IONIZING RADIATION ON SPORES OF BACILLUS MEGATERIUM1. https://journals.asm.org/journal/jb.

  141. Lehri, B., Seddon, A. M. & Karlyshev, A. V. Lactobacillus fermentum 3872 as a potential tool for combatting Campylobacter jejuni infections. Virulence 8, 1753–1760 (2017).

    Google Scholar 

  142. Zhao, Y. et al. Lactobacillus fermentum and its potential immunomodulatory properties. J. Funct. Foods 56, 21–32 (2019).

  143. BacDive Curators. Bacillus vallismortis DV1-F-3 – BacDive ID 1150. https://doi.org/10.13145/bacdive1150.20250331.9.3 (2025).

  144. BacDive Curators. Pediococcus acidilactici CIP 102243 – BacDive ID 137940. https://doi.org/10.13145/bacdive137940.20241212.9.2 (2024).

  145. Feng, P. et al. Human supplementation with Pediococcus acidilactici GR-1 decreases heavy metals levels through modifying the gut microbiota and metabolome. NPJ Biofilms Microbiomes. 8, 63 (2022).

  146. Holland, R., Crow, V. & Curry, B. Lactic Acid Bacteria: Pediococcus spp. in Encyclopedia of Dairy Sciences (Third Edition) (eds. McSweeney, P. L. H. & McNamara, J. P.) 233–237 (Academic Press, Oxford, 2022). https://doi.org/10.1016/B978-0-08-100596-5.23018-7.

  147. Ayyash, M. et al. Physicochemical, bioactive and rheological properties of an exopolysaccharide produced by a probiotic Pediococcus pentosaceus M41. Carbohydr. Polym. 229, 115462 (2020).

    Google Scholar 

  148. BacDive Curators. Levilactobacillus brevis D 13 – BacDive ID 6654. https://doi.org/10.13145/bacdive6654.20241212.9.2 (2024).

  149. Altamura, S. et al. Levilactobacillus brevis CD2 as a multifaceted probiotic to preserve oral health: Tesults of a double-blind, randomized, placebo-controlled trial in healthy adults. J. Transl. Med. 23, 128 (2025).

  150. Zhang, Y. et al. Geobacillus and bacillus spore inactivation by low energy electron beam technology: Resistance and influencing factors. Front. Microbiol. 9, 2720 (2018).

  151. Kim, S. H. et al. Strain-specific metabolomic diversity of Lactiplantibacillus plantarum under aerobic and anaerobic conditions. Food Microbiol. 116, 104364 (2023).

  152. Grigore-Gurgu, L. et al. Lactiplantibacillus plantarum and Lactiplantibacillus paraplantarum postbiotics: Assessment of the biotic-derived metabolites with cytocompatibility and antitumoral potential. Food Biosci. 59, 103863 (2024).

  153. Tabacof, A., Calado, V. & Pereira, N. Third Generation Lactic Acid Production by Lactobacillus pentosus from the Macroalgae Kappaphycus alvarezii Hydrolysates. Fermentation 9, 319 (2023).

  154. Abriouel, H., Manetsberger, J., Caballero Gómez, N. & Benomar, N. In silico genomic analysis of the potential probiotic Lactiplantibacillus pentosus CF2-10N reveals promising beneficial effects with health promoting properties. Front Microbiol 13, 989824 (2022).

  155. Nishida, S., Suzuki, J., Inoue, M., Kamikawa, R. & Yoshida, T. Draft genome of Parageobacillus thermoglucosidasius, a member of hydrogenogenic carbon monoxide utilizers, isolated from a freshwater lake sediment. Microbiol. Resour. Announc. 13, e00795–23 (2024).

  156. Urbaniak, C. et al. Microbial Tracking-2, a metagenomics analysis of bacteria and fungi onboard the International Space Station. Microbiome 10, 100 (2022).

  157. Rywinska, A. et al. Glycerol as a promising substrate for Yarrowia lipolytica biotechnological applications. Biomass Bioenergy 48, 148–166 (2013).

Download references