References
-
Mills, S., Ross, R. P., Hill, C., Fitzgerald, G. F. & Stanton, C. Milk intelligence: mining milk for bioactive substances associated with human health. Int. Dairy J. 21, 377–401 (2011).
-
Medjahdi, K., Didouh, N. & Araujo, R. Pasteurized milk: a highlight on potential sources of contamination by aerobic spore-forming bacteria. Food Control 171, 111134 (2022).
-
Liu, Y. et al. Unraveling the ecological interactions between dairy strains Bacillus licheniformis and Bacillus cereus during the dual-species biofilm formation. Food Microbiol 128, 104716 (2025).
-
Goetz, C., Sanschagrin, L., Jubinville, E., Jacques, M. & Jean, J. Recent progress in antibiofilm strategies in the dairy industry. J. Dairy Sci. https://doi.org/10.3168/jds.2024-25554 (2024).
-
Yuan, L., Dai, H. C., He, G. Q., Yang, Z. Q. & Jiao, H. A. Invited review: current perspectives for analyzing the dairy biofilms by integrated multiomics. J. Dairy Sci. 106, 8181–8192 (2023).
-
Yuan, L. et al. Multi-omics reveals the increased biofilm formation of Salmonella Typhimurium M3 by the induction of tetracycline at sub-inhibitory concentrations. Sci. Total Environ. 899, 165695 (2023).
-
Mouftah, S. F. et al. Stress resistance associated with multi-host transmission and enhanced biofilm formation at 42 °C among hyper-aerotolerant generalist Campylobacter jejuni. Food. Microbiol. 95, 103706 (2021).
-
Wang, L. Y. et al. The anti-microbial peptide citrocin controls Pseudomonas aeruginosa biofilms by breaking down extracellular polysaccharide. Int. J. Mol. Sci. 25, 4122 (2024).
-
Niu, B., Sun, Y. M., Niu, Y. M. & Qiao, S. Ultrasound treatment combined with rhamnolipids for eliminating the biofilm of Bacillus cereus. J. Sep Sci. 12, 2478 (2025).
-
Qi, Y. et al. Transcriptomic analysis of biofilm formation by Bacillus cereus under different carbon source conditions. Food Qual. Saf 7, 553–565 (2024).
-
Gangwal, A. W. et al. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. Fems Microbiol. Rev. 47, fuad044 (2023).
-
Kantiwal, U. & Pandey, J. Efficient inhibition of bacterial biofilm through interference of protein-protein interaction of master regulator proteins: a proof of concept study with SinR- SinI complex of Bacillus subtilis. Appl. Biochem. Biotech. 195, 1947–1967 (2023).
-
Wang, Y. et al. The impact of thermal treatment intensity on proteins, fatty acids, macro/micro-nutrients, flavor, and heating markers of milk-a comprehensive review. Int. J. Mol Sci. 25, 8670 (2024).
-
Liu, S. et al. Effect of microfluidic channel geometry on Bacillus subtilis biofilm formation. Biomed. Microdevices 24, 11 (2022).
-
Hamida, K. et al. Bacillus cereus adhesion: an investigation of the physicochemical characteristics of surface and effect of bio adhesion on the properties of silicone. J. Adhes. Sci. Technol. 27, 90–101 (2013).
-
Zhao, Y. L. et al. Quantitative proteomic analysis of sub-MIC erythromycin inhibiting biofilm formation of S-suis in vitro. J. Proteomics 116, 1–14 (2015).
-
Guo, J. et al. Survival characteristics and transcriptome profiling reveal the adaptive response of the Brucella melitensis 16M biofilm to osmotic stress. Front. Microbiol. 13, 968592 (2022).
-
Wang, H. K., Fan, Q. Y., Wang, Y. X., Yi, L. & Wang, Y. Multi-omics analysis reveals genes and metabolites involved in Streptococcus suis biofilm formation. BMC. Microbiol. 24, 297 (2024).
-
Sadiq, F. A., Yan, B. W., Zhao, J. X., Zhang, H. & Chen, W. Untargeted metabolomics reveals metabolic state of Bifidobacterium bifidum in the biofilm and planktonic states. LWT 118, 108772 (2020).
-
Castro, J. et al. Comparative transcriptomic analysis of Gardnerella vaginalis biofilms vs. planktonic cultures using RNA-seq. NPJ. Biofilms Microbiol. 3, 3 (2017).
-
Cao, L. C. et al. Elucidation of the molecular mechanism of bovine milk gamma-glutamyltransferase catalyzed formation of gamma-glutamyl-valyl-glycine. J. Agric. Food Chem. 71, 2455–2463 (2023).
-
Kang, Y. J., Shen, M., Yang, X. L., Cheng, D. C. & Zhao, Q. X. A plant growth-promoting rhizobacteria (PGPR) mixture does not display synergistic effects, likely by biofilm but not growth inhibition. Microbiology 83, 666–673 (2014).
-
Liu, J. et al. γ-Polyglutamic acid (γ-PGA) produced by Bacillus amyloliquefaciens C06 promoting its colonization on fruit surface. Int. J. Food Microbiol. 142, 190–197 (2010).
-
Singh, P. & Banik, R. M. Biochemical characterization and antitumor study of L-Glutaminase from Bacillus cereus MTCC 1305. Appl. Biochem. Biotech. 171, 522–531 (2013).
-
Shemesh, M. & Chai, Y. R. A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via Histidine Kinase KinD signaling. J. Bacteriol. 195, 2747–2754 (2013).
-
Liu, N. et al. Transcription factor Spo0A regulates the biosynthesis of difficidin in Bacillus amyloliquefaciens. Microbiol. Spectr. 11, e0104423 (2023).
-
Lichtenberg, M. et al. Cyclic-di-GMP signaling controls metabolic activity in Pseudomonas aeruginosa. Cell. Rep. 41, 111515 (2022).
-
Kennelly, C., Tran, P. & Prindle, A. Environmental purines decrease Pseudomonas aeruginosa biofilm formation by disrupting c-di-GMP metabolism. Cell. Rep. 43, 114154 (2024).
-
Zheng, Y. Q., Wang, D. & Ma, L. Y. Z. Effect of polyhexamethylene biguanide in combination with undecylenamidopropyl betaine or PslG on biofilm clearance. Int. J. Mol Sci. 22, 768 (2021).
-
Goc, A., Sumera, W., Rath, M. & Niedzwiecki, A. Antibacterial and antibiofilm effects of L-Carnitine-Fumarate on oral streptococcal strains streptococcus mutans and streptococcus sobrinus. Microorganisms 12, 1613 (2024).
-
Zhang, Y. et al. Essential oil components inhibit biofilm formation in Erwinia carotovora and Pseudomonas fluorescens via anti-quorum sensing activity. LWT 92, 133–139 (2018).
-
Çam, S. & Badilli, I. The effect of NaCl, pH, and phosphate on biofilm formation and exopolysaccharide production by high biofilm producers of Bacillus strains. Folia. Microbiol. 69, 613–624 (2023).
-
Wang, S. et al. Unveiling the occurrence and non-negligible role of amino sugars in waste activated sludge fermentation by an enriched chitin-degradation consortium. Environ. Sci. Technol. 58, 1966–1975 (2024).
-
Pasvolsky, R., Zakin, V., Ostrova, I. & Shemesh, M. Butyric acid released during milk lipolysis triggers biofilm formation of Bacillus species. Int. J. Food Microbiol. 181, 19–27 (2014).
-
Ogura, M. Glucose-Mediated Protein Arginine Phosphorylation/Dephosphorylation RegulatesylxREncoding Nucleoid-Associated Protein and Cell Growth in Bacillus subtilis. Front. Microbiol. 11, 590828 (2020).
-
Zhang, J. et al. Arginine kinase McsB and ClpC complex impairs the transition to biofilm formation in Bacillus subtilis. Microbiol. Res. 292, 127979 (2025).
-
Kolodkin-Gal, I. et al. Amino acids trigger biofilm disassembly. Science 328, 627–629 (2010).
-
Lv, Q. J. et al. Efficient penetration and in situ polymerization of dopamine in biofilms for the eradication. Chem. Eng. J. 503, 158562 (2025).
-
Chamlagain, M., Hu, J. N., Sionov, R. V. & Steinberg, D. Anti-bacterial and anti-biofilm activities of arachidonic acid against the cariogenic bacterium Streptococcus mutans. Front. Microbiol. 15, 1333274 (2024).
-
Majed, R., Faille, C., Kallassy, M. & Gohar, M. Bacillus cereus Biofilms-Same, Only Different. Front. Microbiol. 7, 1054 (2016).
-
Yuan, L. et al. Spoilage potential of psychrotrophic bacteria isolated from raw milk and the thermo-stability of their enzymes. J. Zhejiang Univ-Sci. B. 19, 630–642 (2018).
-
Li, Z. et al. Marine biofilms with significant corrosion inhibition performance by secreting extracellular polymeric substances. ACS Appl. Mater. Interfaces. 13, 47272–47282 (2021).
-
Lv, R. L. et al. Ultrasound: enhance the detachment of exosporium and decrease the hydrophobicity of Bacillus cereus spores. LWT 116, 108473 (2019).
-
Jindal, S. & Anand, S. Comparison of adhesion characteristics of common dairy sporeformers and their spores on unmodified and modified stainless steel contact surfaces. J. Dairy Sci. 101, 5799–5808 (2018).
-
Zhang, Y. et al. Comparative study of the role of surfactin-triggered signalling in biofilm formation among different Bacillus species. Microbiol. Res. 254, 126920 (2022).
-
Böhning, J. et al. Donor-strand exchange drives assembly of the TasA scaffold in Bacillus subtilis biofilms. Nat. Commun. 13, 7082 (2022).
-
Yi, Y., Chen, M., Coldea, T. E., Yang, H. & Zhao, H. Soy protein hydrolysates induce menaquinone-7 biosynthesis by enhancing the biofilm formation of Bacillus subtilis natto. Food. Microbiol. 124, 104599 (2024).
