References
-
Cannavo, A. et al. Are skeletal muscle changes during prolonged space flights similar to those experienced by frail and sarcopenic older adults? Life 12, 2139 (2022).
-
Akima, H. et al. Effect of short-duration spaceflight on thigh and leg muscle volume. Med. Sci. Sports Exerc. 32, 1743–1747 (2000).
-
Fitts, R. H., Riley, D. R. & Widrick, J. J. Physiology of a microgravity environment invited review: Microgravity and skeletal muscle. J. Appl. Physiol. 89, 823–839 (2000).
-
LeBlanc, A. et al. Bone mineral and lean tissue loss after long duration space flight. J. Musculoskelet. Neuronal Interact. 1, 157–160 (2000).
-
Adam, H. The physical price of a ticket into space. J. Br. Interplanet. Soc. 56, 152–159 (2003).
-
Hackney, K. J., Everett, M., Scott, J. M. & Ploutz-Snyder, L. Blood flow-restricted exercise in space. Extrem. Physiol. Med. 1, 12 (2012).
-
Breen, L. & Phillips, S. M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ‘anabolic resistance’ of ageing. Nutr. Metab. 8, 68 (2011).
-
Bhattacharjee, N. V. et al. Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2057–2099 (2024).
-
Vasilaki, A., McArdle, F., Iwanejko, L. M. & McArdle, A. Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age. Mech. Ageing Dev. 127, 830–839 (2006).
-
Brooks, S. V. & Faulkner, J. A. Contractile properties of skeletal muscles from young, adult and aged mice. J. Physiol. 404, 71–82 (1988).
-
McArdle, A., Dillmann, W. H., Mestril, R., Faulkner, J. A. & Jackson, M. J. Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J. 18, 355–357 (2004).
-
Janssen-Heininger, Y. M. W. et al. Redox-based regulation of signal transduction: Principles, pitfalls, and promises. Free Radic. Biol. Med. 45, 1–17 (2008).
-
Jackson, M. J. et al. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Mol. Asp. Med. 23, 209–285 (2002).
-
Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002).
-
Viña, J. et al. Mitochondrial biogenesis in exercise and in ageing. Adv. Drug Deliv. Rev. 61, 1369–1374 (2009).
-
Cobley, J. N. et al. Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle. Free Radic. Biol. Med. 70, 23–32 (2014).
-
Kayani, A. C. et al. Overexpression of HSP10 in skeletal muscle of transgenic mice prevents the age-related fall in maximum tetanic force generation and muscle cross-sectional area. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R268–R276 (2010).
-
Pollard, A. K. et al. Molecular muscle experiment: hardware and operational lessons for future astrobiology space experiments. Astrobiology 20, 935–943 (2020).
-
Mamchaoui, K. et al. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet. Muscle 1, 34 (2011).
-
Thorley, M. et al. Skeletal muscle characteristics are preserved in hTERT/cdk4 human myogenic cell lines. Skelet. Muscle 6, 43 (2016).
-
Tollitt, B. R. et al. A comparison of human skeletal muscle cell maturation in 2D versus 3D culture: A quantitative proteomic study. Physiol. Rep. 13, e70420 (2025).
-
Palomero, J., Vasilaki, A., Pye, D., McArdle, A. & Jackson, M. J. Aging increases the oxidation of dichlorohydrofluorescein in single isolated skeletal muscle fibers at rest, but not during contractions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R351–R358 (2013).
-
Hsu, C. P., Moghadaszadeh, B., Hartwig, J. H. & Beggs, A. H. Sarcomeric and nonmuscle α-actinin isoforms exhibit differential dynamics at skeletal muscle Z-lines. Cytoskeleton 75, 213–228 (2018).
-
Bosutti, A. et al. Microgravity-induced changes in skeletal muscle and possible countermeasures: what we can learn from bed rest and human space studies. Exp. Physiol. https://doi.org/10.1113/EP092345 (2025).
-
Camera, A. et al. Aging and putative frailty biomarkers are altered by spaceflight. Sci. Rep. 14, 13098 (2024).
-
van Rijthoven, S. & van Loon, J. J. W. A. Aging and altered gravity: a cellular perspective. FASEB J. Publ. Fed. Am. Soc. Exp. Biol. 39, e70777 (2025).
-
Kim, S., Ayan, B., Shayan, M., Rando, T. A. & Huang, N. F. Skeletal muscle-on-a-chip in microgravity as a platform for regeneration modeling and drug screening. Stem Cell Rep. 19, 1061–1073 (2024).
-
Parafati, M. et al. Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight. npj Microgravity 9, 77 (2023).
-
Juhl, O. J. et al. Update on the effects of microgravity on the musculoskeletal system. npj Microgravity 7, 1–15 (2021).
-
Ren, Z. et al. Simulated microgravity attenuates myogenesis and contractile function of 3D engineered skeletal muscle tissues. npj Microgravity 10, 18 (2024).
-
Grimm, D. et al. Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng. Part B Rev. 20, 555–566 (2014).
-
da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e20 (2020).
-
Nguyen, H. P., Tran, P. H., Kim, K. S. & Yang, S. G. The effects of real and simulated microgravity on cellular mitochondrial function. npj Microgravity 7, 44 (2021).
-
Murgia, M. et al. Spaceflight on the ISS changed the skeletal muscle proteome of two astronauts. npj Microgravity 10, 60 (2024).
-
Kulesh, D. A. et al. Space shuttle flight (STS-45) of L8 myoblast cells results in the isolation of a nonfusing cell line variant. J. Cell. Biochem. 55, 530–544 (1994).
-
Uchida, T. et al. Reactive oxygen species upregulate expression of muscle atrophy-associated ubiquitin ligase Cbl-b in rat L6 skeletal muscle cells. Am. J. Physiol. Cell Physiol. 314, C721–C731 (2018).
-
Di Filippo, E. S. et al. Preparation of human muscle precursor cells for the myogravity project’s study of cell cultures in experiment units for space flight purposes. Appl. Sci. 12, 1–13 (2022).
-
Madden, L., Juhas, M., Kraus, W. E., Truskey, G. A. & Bursac, N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife 2015, e04885 (2015).
-
Khodabukus, A. et al. Tissue-engineered human myobundle system as a platform for evaluation of skeletal muscle injury biomarkers. Toxicol. Sci. 176, 124–136 (2020).
-
Schätzlein, E. & Blaeser, A. Recent trends in bioartificial muscle engineering and their applications in cultured meat, biorobotic systems and biohybrid implants. Commun. Biol. 5, 737 (2022).
-
Heaton, R. A. et al. Peroxiredoxin 2 mediates redox-stimulated adaptations to oxidative phosphorylation induced by contractile activity in human skeletal muscle myotubes. Free Radic. Biol. Med. 227, 395–406 (2025).
-
Gomez-Florit, M. et al. Natural-based hydrogels for tissue engineering applications. Molecules 25, 5858 (2020).
-
Heher, P. et al. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomater. 24, 251–265 (2015).
-
Bakhtiary, N., Ghalandari, B., Ghorbani, F., Varma, S. N. & Liu, C. Advances in peptide-based hydrogel for tissue engineering. Polymers 15, 1068 (2023).
-
Volpi, M., Paradiso, A., Costantini, M. & Świȩszkowski, W. Hydrogel-based fiber biofabrication techniques for skeletal muscle tissue engineering. ACS Biomater. Sci. Eng. 8, 379–405 (2022).
-
Michl, J., Park, K. C. & Swietach, P. Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun. Biol. 2, 144 (2019).
-
Leibovitz, A. The growth and maintenance of tissue-cell cultures in free gas exchange with the atmosphere. Am. J. Epidemiol. 78, 173–180 (1963).
-
Chang, R. S. & Geyer, R. P. Propagation of conjunctival and HeLa cells in various carbohydrate media. Proc. Soc. Exp. Biol. Med. 96, 336–340 (1957).
-
Eagle, H., Barban, S., Levy, M. & Schulze, H. O. The utilization of carbohydrates by human cell cultures. J. Biol. Chem. 233, 551–558 (1958).
-
Zuurveld, J. G. E. M., Oosterhof, A., Veerkamp, J. H. & van Moerkerk, H. T. B. Oxidative metabolism of cultured human skeletal muscle cells in comparison with biopsy material. BBA Mol. Cell Res. 844, 1–8 (1985).
-
Ibsen, K. H. The crabtree effect” a review. Cancer Res. 21, 829–841 (1961).
-
Marroquin, L. D., Hynes, J., Dykens, J. A., Jamieson, J. D. & Will, Y. Circumventing the crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol. Sci. 97, 539–547 (2007).
-
Reitzer, L. J., Wice, B. M. & Kennell, D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254, 2669–2676 (1979).
-
Aguer, C. et al. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS ONE 6, e28536 (2011).
-
Mozneb, M. et al. Surface tension enables induced pluripotent stem cell culture in commercially available hardware during spaceflight. npj Microgravity 10, 1–10 (2024).
-
White, C. R. & Kearney, M. R. Determinants of inter-specific variation in basal metabolic rate. J. Comp. Physiol. B 183, 1–26 (2013).
-
Glazier, D. S. & Gjoni, V. Interactive effects of intrinsic and extrinsic factors on metabolic rate. Philos. Trans. R. Soc. B Biol. Sci. 379, 20220489 (2024).
-
Masterton, R. J. & Smales, C. M. The impact of process temperature on mammalian cell lines and the implications for the production of recombinant proteins in CHO cells. Pharm. Bioprocess. 2, 49–61 (2014).
-
Kaufmann, H., Mazur, X., Fussenegger, M. & Bailey, J. E. Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol. Bioeng. 63, 573–582 (1999).
-
Rundfeldt, L. C., Gunga, H. C. & Steinach, M. Anabolic signaling and response in sarcopenia as a model for microgravity induced muscle deconditioning: a systematic review. Reach 13, 100025 (2019).
-
Clemente, F., Romano, M., Bifulco, P. & Cesarelli, M. Study of muscular tissue in different physiological conditions using electrical impedance spectroscopy measurements. Biocybern. Biomed. Eng. 34, 4–9 (2014).
-
Shiffman, C. A., Aaron, R. & Rutkove, S. B. Electrical impedance of muscle during isometric contraction. Physiol. Meas. 24, 213–234 (2003).
-
Zagar, T. & Krizaj, D. Multivariate analysis of electrical impedance spectra for relaxed and contracted skeletal muscle. Physiol. Meas. 29, S365–S372 (2008).
-
Herranz, R. et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1–17 (2013).
-
Jones, C. W. et al. Molecular and physiological changes in the SpaceX Inspiration4 civilian crew. Nature 632, 1155–1164 (2024).
-
Francis, T., Soendenbroe, C., Lazarus, N. R., Mackey, A. L. & Harridge, S. D. R. Insights into human muscle biology from human primary skeletal muscle cell culture. J. Muscle Res. Cell Motil. https://doi.org/10.1007/s10974-025-09696-w (2025).
-
Di Filippo, E. S. et al. The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue. npj Microgravity 10, 92 (2024).
-
Iberite, F., Gruppioni, E. & Ricotti, L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. NPJ Regen. Med. 7, 23 (2022).
