MicroAge mission: experimental design and hardware for a bespoke culture system supporting tissue-engineered skeletal muscle

microage-mission:-experimental-design-and-hardware-for-a-bespoke-culture-system-supporting-tissue-engineered-skeletal-muscle
MicroAge mission: experimental design and hardware for a bespoke culture system supporting tissue-engineered skeletal muscle

References

  1. Cannavo, A. et al. Are skeletal muscle changes during prolonged space flights similar to those experienced by frail and sarcopenic older adults? Life 12, 2139 (2022).

  2. Akima, H. et al. Effect of short-duration spaceflight on thigh and leg muscle volume. Med. Sci. Sports Exerc. 32, 1743–1747 (2000).

    Google Scholar 

  3. Fitts, R. H., Riley, D. R. & Widrick, J. J. Physiology of a microgravity environment invited review: Microgravity and skeletal muscle. J. Appl. Physiol. 89, 823–839 (2000).

    Google Scholar 

  4. LeBlanc, A. et al. Bone mineral and lean tissue loss after long duration space flight. J. Musculoskelet. Neuronal Interact. 1, 157–160 (2000).

    Google Scholar 

  5. Adam, H. The physical price of a ticket into space. J. Br. Interplanet. Soc. 56, 152–159 (2003).

    Google Scholar 

  6. Hackney, K. J., Everett, M., Scott, J. M. & Ploutz-Snyder, L. Blood flow-restricted exercise in space. Extrem. Physiol. Med. 1, 12 (2012).

    Google Scholar 

  7. Breen, L. & Phillips, S. M. Skeletal muscle protein metabolism in the elderly: Interventions to counteract the ‘anabolic resistance’ of ageing. Nutr. Metab. 8, 68 (2011).

    Google Scholar 

  8. Bhattacharjee, N. V. et al. Global fertility in 204 countries and territories, 1950–2021, with forecasts to 2100: a comprehensive demographic analysis for the Global Burden of Disease Study 2021. Lancet 403, 2057–2099 (2024).

    Google Scholar 

  9. Vasilaki, A., McArdle, F., Iwanejko, L. M. & McArdle, A. Adaptive responses of mouse skeletal muscle to contractile activity: the effect of age. Mech. Ageing Dev. 127, 830–839 (2006).

    Google Scholar 

  10. Brooks, S. V. & Faulkner, J. A. Contractile properties of skeletal muscles from young, adult and aged mice. J. Physiol. 404, 71–82 (1988).

    Google Scholar 

  11. McArdle, A., Dillmann, W. H., Mestril, R., Faulkner, J. A. & Jackson, M. J. Overexpression of HSP70 in mouse skeletal muscle protects against muscle damage and age-related muscle dysfunction. FASEB J. 18, 355–357 (2004).

    Google Scholar 

  12. Janssen-Heininger, Y. M. W. et al. Redox-based regulation of signal transduction: Principles, pitfalls, and promises. Free Radic. Biol. Med. 45, 1–17 (2008).

    Google Scholar 

  13. Jackson, M. J. et al. Antioxidants, reactive oxygen and nitrogen species, gene induction and mitochondrial function. Mol. Asp. Med. 23, 209–285 (2002).

    Google Scholar 

  14. Dröge, W. Free radicals in the physiological control of cell function. Physiol. Rev. 82, 47–95 (2002).

    Google Scholar 

  15. Viña, J. et al. Mitochondrial biogenesis in exercise and in ageing. Adv. Drug Deliv. Rev. 61, 1369–1374 (2009).

    Google Scholar 

  16. Cobley, J. N. et al. Lifelong training preserves some redox-regulated adaptive responses after an acute exercise stimulus in aged human skeletal muscle. Free Radic. Biol. Med. 70, 23–32 (2014).

    Google Scholar 

  17. Kayani, A. C. et al. Overexpression of HSP10 in skeletal muscle of transgenic mice prevents the age-related fall in maximum tetanic force generation and muscle cross-sectional area. Am. J. Physiol. Regul. Integr. Comp. Physiol. 299, R268–R276 (2010).

    Google Scholar 

  18. Pollard, A. K. et al. Molecular muscle experiment: hardware and operational lessons for future astrobiology space experiments. Astrobiology 20, 935–943 (2020).

    Google Scholar 

  19. Mamchaoui, K. et al. Immortalized pathological human myoblasts: towards a universal tool for the study of neuromuscular disorders. Skelet. Muscle 1, 34 (2011).

    Google Scholar 

  20. Thorley, M. et al. Skeletal muscle characteristics are preserved in hTERT/cdk4 human myogenic cell lines. Skelet. Muscle 6, 43 (2016).

    Google Scholar 

  21. Tollitt, B. R. et al. A comparison of human skeletal muscle cell maturation in 2D versus 3D culture: A quantitative proteomic study. Physiol. Rep. 13, e70420 (2025).

    Google Scholar 

  22. Palomero, J., Vasilaki, A., Pye, D., McArdle, A. & Jackson, M. J. Aging increases the oxidation of dichlorohydrofluorescein in single isolated skeletal muscle fibers at rest, but not during contractions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R351–R358 (2013).

    Google Scholar 

  23. Hsu, C. P., Moghadaszadeh, B., Hartwig, J. H. & Beggs, A. H. Sarcomeric and nonmuscle α-actinin isoforms exhibit differential dynamics at skeletal muscle Z-lines. Cytoskeleton 75, 213–228 (2018).

    Google Scholar 

  24. Bosutti, A. et al. Microgravity-induced changes in skeletal muscle and possible countermeasures: what we can learn from bed rest and human space studies. Exp. Physiol. https://doi.org/10.1113/EP092345 (2025).

  25. Camera, A. et al. Aging and putative frailty biomarkers are altered by spaceflight. Sci. Rep. 14, 13098 (2024).

    Google Scholar 

  26. van Rijthoven, S. & van Loon, J. J. W. A. Aging and altered gravity: a cellular perspective. FASEB J. Publ. Fed. Am. Soc. Exp. Biol. 39, e70777 (2025).

    Google Scholar 

  27. Kim, S., Ayan, B., Shayan, M., Rando, T. A. & Huang, N. F. Skeletal muscle-on-a-chip in microgravity as a platform for regeneration modeling and drug screening. Stem Cell Rep. 19, 1061–1073 (2024).

    Google Scholar 

  28. Parafati, M. et al. Human skeletal muscle tissue chip autonomous payload reveals changes in fiber type and metabolic gene expression due to spaceflight. npj Microgravity 9, 77 (2023).

    Google Scholar 

  29. Juhl, O. J. et al. Update on the effects of microgravity on the musculoskeletal system. npj Microgravity 7, 1–15 (2021).

    Google Scholar 

  30. Ren, Z. et al. Simulated microgravity attenuates myogenesis and contractile function of 3D engineered skeletal muscle tissues. npj Microgravity 10, 18 (2024).

    Google Scholar 

  31. Grimm, D. et al. Growing tissues in real and simulated microgravity: new methods for tissue engineering. Tissue Eng. Part B Rev. 20, 555–566 (2014).

    Google Scholar 

  32. da Silveira, W. A. et al. Comprehensive multi-omics analysis reveals mitochondrial stress as a central biological hub for spaceflight impact. Cell 183, 1185–1201.e20 (2020).

    Google Scholar 

  33. Nguyen, H. P., Tran, P. H., Kim, K. S. & Yang, S. G. The effects of real and simulated microgravity on cellular mitochondrial function. npj Microgravity 7, 44 (2021).

    Google Scholar 

  34. Murgia, M. et al. Spaceflight on the ISS changed the skeletal muscle proteome of two astronauts. npj Microgravity 10, 60 (2024).

    Google Scholar 

  35. Kulesh, D. A. et al. Space shuttle flight (STS-45) of L8 myoblast cells results in the isolation of a nonfusing cell line variant. J. Cell. Biochem. 55, 530–544 (1994).

    Google Scholar 

  36. Uchida, T. et al. Reactive oxygen species upregulate expression of muscle atrophy-associated ubiquitin ligase Cbl-b in rat L6 skeletal muscle cells. Am. J. Physiol. Cell Physiol. 314, C721–C731 (2018).

    Google Scholar 

  37. Di Filippo, E. S. et al. Preparation of human muscle precursor cells for the myogravity project’s study of cell cultures in experiment units for space flight purposes. Appl. Sci. 12, 1–13 (2022).

    Google Scholar 

  38. Madden, L., Juhas, M., Kraus, W. E., Truskey, G. A. & Bursac, N. Bioengineered human myobundles mimic clinical responses of skeletal muscle to drugs. Elife 2015, e04885 (2015).

    Google Scholar 

  39. Khodabukus, A. et al. Tissue-engineered human myobundle system as a platform for evaluation of skeletal muscle injury biomarkers. Toxicol. Sci. 176, 124–136 (2020).

    Google Scholar 

  40. Schätzlein, E. & Blaeser, A. Recent trends in bioartificial muscle engineering and their applications in cultured meat, biorobotic systems and biohybrid implants. Commun. Biol. 5, 737 (2022).

    Google Scholar 

  41. Heaton, R. A. et al. Peroxiredoxin 2 mediates redox-stimulated adaptations to oxidative phosphorylation induced by contractile activity in human skeletal muscle myotubes. Free Radic. Biol. Med. 227, 395–406 (2025).

    Google Scholar 

  42. Gomez-Florit, M. et al. Natural-based hydrogels for tissue engineering applications. Molecules 25, 5858 (2020).

  43. Heher, P. et al. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomater. 24, 251–265 (2015).

    Google Scholar 

  44. Bakhtiary, N., Ghalandari, B., Ghorbani, F., Varma, S. N. & Liu, C. Advances in peptide-based hydrogel for tissue engineering. Polymers 15, 1068 (2023).

  45. Volpi, M., Paradiso, A., Costantini, M. & Świȩszkowski, W. Hydrogel-based fiber biofabrication techniques for skeletal muscle tissue engineering. ACS Biomater. Sci. Eng. 8, 379–405 (2022).

    Google Scholar 

  46. Michl, J., Park, K. C. & Swietach, P. Evidence-based guidelines for controlling pH in mammalian live-cell culture systems. Commun. Biol. 2, 144 (2019).

    Google Scholar 

  47. Leibovitz, A. The growth and maintenance of tissue-cell cultures in free gas exchange with the atmosphere. Am. J. Epidemiol. 78, 173–180 (1963).

    Google Scholar 

  48. Chang, R. S. & Geyer, R. P. Propagation of conjunctival and HeLa cells in various carbohydrate media. Proc. Soc. Exp. Biol. Med. 96, 336–340 (1957).

    Google Scholar 

  49. Eagle, H., Barban, S., Levy, M. & Schulze, H. O. The utilization of carbohydrates by human cell cultures. J. Biol. Chem. 233, 551–558 (1958).

    Google Scholar 

  50. Zuurveld, J. G. E. M., Oosterhof, A., Veerkamp, J. H. & van Moerkerk, H. T. B. Oxidative metabolism of cultured human skeletal muscle cells in comparison with biopsy material. BBA Mol. Cell Res. 844, 1–8 (1985).

    Google Scholar 

  51. Ibsen, K. H. The crabtree effect” a review. Cancer Res. 21, 829–841 (1961).

    Google Scholar 

  52. Marroquin, L. D., Hynes, J., Dykens, J. A., Jamieson, J. D. & Will, Y. Circumventing the crabtree effect: replacing media glucose with galactose increases susceptibility of HepG2 cells to mitochondrial toxicants. Toxicol. Sci. 97, 539–547 (2007).

    Google Scholar 

  53. Reitzer, L. J., Wice, B. M. & Kennell, D. Evidence that glutamine, not sugar, is the major energy source for cultured HeLa cells. J. Biol. Chem. 254, 2669–2676 (1979).

    Google Scholar 

  54. Aguer, C. et al. Galactose enhances oxidative metabolism and reveals mitochondrial dysfunction in human primary muscle cells. PLoS ONE 6, e28536 (2011).

    Google Scholar 

  55. Mozneb, M. et al. Surface tension enables induced pluripotent stem cell culture in commercially available hardware during spaceflight. npj Microgravity 10, 1–10 (2024).

    Google Scholar 

  56. White, C. R. & Kearney, M. R. Determinants of inter-specific variation in basal metabolic rate. J. Comp. Physiol. B 183, 1–26 (2013).

    Google Scholar 

  57. Glazier, D. S. & Gjoni, V. Interactive effects of intrinsic and extrinsic factors on metabolic rate. Philos. Trans. R. Soc. B Biol. Sci. 379, 20220489 (2024).

    Google Scholar 

  58. Masterton, R. J. & Smales, C. M. The impact of process temperature on mammalian cell lines and the implications for the production of recombinant proteins in CHO cells. Pharm. Bioprocess. 2, 49–61 (2014).

    Google Scholar 

  59. Kaufmann, H., Mazur, X., Fussenegger, M. & Bailey, J. E. Influence of low temperature on productivity, proteome and protein phosphorylation of CHO cells. Biotechnol. Bioeng. 63, 573–582 (1999).

    Google Scholar 

  60. Rundfeldt, L. C., Gunga, H. C. & Steinach, M. Anabolic signaling and response in sarcopenia as a model for microgravity induced muscle deconditioning: a systematic review. Reach 13, 100025 (2019).

    Google Scholar 

  61. Clemente, F., Romano, M., Bifulco, P. & Cesarelli, M. Study of muscular tissue in different physiological conditions using electrical impedance spectroscopy measurements. Biocybern. Biomed. Eng. 34, 4–9 (2014).

    Google Scholar 

  62. Shiffman, C. A., Aaron, R. & Rutkove, S. B. Electrical impedance of muscle during isometric contraction. Physiol. Meas. 24, 213–234 (2003).

    Google Scholar 

  63. Zagar, T. & Krizaj, D. Multivariate analysis of electrical impedance spectra for relaxed and contracted skeletal muscle. Physiol. Meas. 29, S365–S372 (2008).

    Google Scholar 

  64. Herranz, R. et al. Ground-based facilities for simulation of microgravity: organism-specific recommendations for their use, and recommended terminology. Astrobiology 13, 1–17 (2013).

    Google Scholar 

  65. Jones, C. W. et al. Molecular and physiological changes in the SpaceX Inspiration4 civilian crew. Nature 632, 1155–1164 (2024).

    Google Scholar 

  66. Francis, T., Soendenbroe, C., Lazarus, N. R., Mackey, A. L. & Harridge, S. D. R. Insights into human muscle biology from human primary skeletal muscle cell culture. J. Muscle Res. Cell Motil. https://doi.org/10.1007/s10974-025-09696-w (2025).

  67. Di Filippo, E. S. et al. The MyoGravity project to study real microgravity effects on human muscle precursor cells and tissue. npj Microgravity 10, 92 (2024).

    Google Scholar 

  68. Iberite, F., Gruppioni, E. & Ricotti, L. Skeletal muscle differentiation of human iPSCs meets bioengineering strategies: perspectives and challenges. NPJ Regen. Med. 7, 23 (2022).

    Google Scholar 

Download references