References
-
Verseux, C. et al. Sustainable life support on Mars – The potential roles of cyanobacteria. Int. J. Astrobiol. 15, 65–92 (2016).
-
Gumulya, Y., Zea, L. & Kaksonen, A. H. In situ resource utilisation: the potential for space biomining. Miner. Eng. 176, 107288 (2022).
-
Averesch, N. J. H. Choice of microbial system for in-situ resource utilization on Mars. Front. Astron. Sp. Sci. 8, 1–7 (2021).
-
Santomartino, R. et al. Toward sustainable space exploration: a roadmap for harnessing the power of microorganisms. Nat. Commun. 14, 1–11 (2023).
-
Cockell, C. S. Geomicrobiology beyond Earth: microbe-mineral interactions in space exploration and settlement. Trends Microbiol. 18, 308–314 (2010).
-
Averesch, N. J. H. et al. Microbial biomanufacturing for space-exploration—what to take and when to make. Nat. Commun. 14, 1–10 (2023).
-
Nangle, S. N. et al. The case for biotech on Mars. Nat. Biotechnol. 38, 401–407 (2020).
-
Berliner, A. J. et al. Space bioprocess engineering on the horizon. Commun. Eng. 1, 1–8 (2022).
-
Roberto, F. F. & Schippers, A. Progress in bioleaching: part B, applications of microbial processes by the minerals industries. Appl. Microbiol. Biotechnol. 106, 5913–5928 (2022).
-
Johnson, D. B., Grail, B. M. & Hallberg, K. B. A new direction for biomining: extraction of metals by reductive dissolution of oxidized ores. Minerals 3, 49–58 (2013).
-
Brune, K. D. & Bayer, T. S. Engineering microbial consortia to enhance biomining and bioremediation. Front. Microbiol. 3, 1–6 (2012).
-
Brandl, H., Bosshard, R. & Wegmann, M. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Process Met. 9, 569–576 (1999).
-
Schippers, A. et al. Biomining: metal recovery from ores with microorganisms. Geobiotechnol. I. Adv. Biochem. Eng. 141, 1–47 (2013).
-
Rohwerder, T., Gehrke, T., Kinzler, K. & Sand, W. Bioleaching review part A: progress in bioleaching: fundamentals and mechanisms of bacterial metal sulfide oxidation. Appl. Microbiol. Biotechnol. 63, 239–248 (2003).
-
Noël, N., Florian, B. & Sand, W. AFM. & EFM study on attachment of acidophilic leaching organisms. Hydrometallurgy 104, 370–375 (2010).
-
Adeleke, R., Cloete, E. & Khasa, D. Isolation and identification of iron ore-solubilising fungus. S. Afr. J. Sci. 106, 1–6 (2010).
-
Din, G. et al. Characterization of organic acid producing Aspergillus tubingensis FMS1 and its role in metals leaching from soil. Geomicrobiol. J. 37, 336–344 (2020).
-
Barnett, M. J., Palumbo-Roe, B. & Gregory, S. P. Comparison of heterotrophic bioleaching and ammonium sulfate ion exchange leaching of rare earth elements from a Madagascan ion-adsorption clay. Minerals 8, 1–11 (2018).
-
Gadd, G. M. Fungal production of citric and oxalic acid: Importance in metal speciation, physiology and biogeochemical processes. Advances in Microbial Physiology vol. 41 (Elsevier Masson SAS, 1999).
-
Santomartino, R., Zea, L. & Cockell, C. S. The smallest space miners: principles of space biomining. Extremophiles 26, 1–19 (2022).
-
Cockell, C. S. & Santomartino, R. Mining and Microbiology for the Solar System Silicate and Basalt Economy. In In Space Manufacturing Resources: Earth and Planetary Exploration Applications (eds. Hessel, V., Stoudemire, J., Miyamoto, H. & Fisk, I. D.) 163–185 (Wiley, https://doi.org/10.1002/9783527830909.ch8. 2022).
-
Cockell, C. S. et al. Microbially-enhanced vanadium mining and bioremediation under micro- and Mars gravity on the International Space Station. Front. Microbiol. 12, 663 (2021).
-
Cockell, C. S. et al. Space station biomining experiment demonstrates rare earth element extraction in microgravity and Mars gravity. Nat. Commun. 11, 1–12 (2020).
-
Byloos, B. et al. The impact of space flight on survival and interaction of Cupriavidus metallidurans CH34 with basalt, a volcanic moon analog rock. Front. Microbiol. 8, 1–14 (2017).
-
Castelein, S. M. et al. Iron can be microbially extracted from Lunar and Martian regolith simulants and 3D printed into tough structural materials. PLoS One 16, 1–21 (2021).
-
Figueira, J. et al. Biomining of Lunar regolith simulant EAC-1A with the fungus Penicillium simplicissimum. Fungal Biol. Biotechnol. 12, 8 (2025).
-
Waajen, A. C., Prescott, R. & Cockell, C. S. Meteorites as Food Source on Early Earth: Growth, Selection, and Inhibition of a Microbial Community on a Carbonaceous Chondrite. Astrobiology 22, (2022).
-
Milojevic, T. et al. Exploring the microbial biotransformation of extraterrestrial material on nanometer scale. Sci. Rep. 9, 1–11 (2019).
-
Milojevic, T. et al. Chemolithotrophy on the Noachian Martian breccia NWA 7034 via experimental microbial biotransformation. Commun. Earth Environ. 2, 39 (2021).
-
Housen, K. R., Wilkening, L. L., Chapman, C. R. & Greenberg, R. Asteroidal regoliths. Icarus 39, 317–351 (1979).
-
Rubin, A. E. Mineralogy of meteorite groups. Meteorit. Planet. Sci. 32, 231–247 (1997).
-
Ross, S. D. Near-Earth asteroid mining. in Space Industry Report 1–24 (Springer, 2001).
-
Klas, M. et al. Biomining and methanogenesis for resource extraction from asteroids. Space Policy 34, 18–22 (2015).
-
Steenstra, E. S. et al. An experimental assessment of the potential of sulfide saturation of the source regions of eucrites and angrites: implications for asteroidal models of core formation, late accretion and volatile element depletions. Geochim. Cosmochim. Acta 269, 39–62 (2020).
-
Kettler, P. B. Platinum group metals in catalysis: fabrication of catalysts and catalyst precursors. Org. Process Res. Dev. 7, 342–354 (2003).
-
Hein, A. M., Matheson, R. & Fries, D. A techno-economic analysis of asteroid mining. Acta Astronaut 168, 104–115 (2020).
-
Gertsch, R. E. Asteroid mining. In Space Resources: Materials 111–120 (Springer, 1992).
-
Hedrich, S. et al. Bioprocessing of oxidized platinum group element (PGE) ores as pre-treatment for efficient chemical extraction of PGE. Hydrometallurgy 196, 105419 (2020).
-
Reith, F. et al. Biological role in the transformation of platinum-group mineral grains. Nat. Geosci. 9, 294–298 (2016).
-
Reddy, G. S. N. & Garcia-Pichel, F. Sphingomonas mucosissima sp. nov. and Sphingomonas desiccabilis sp. nov., from biological soil crusts in the Colorado Plateau, USA. Int. J. Syst. Evol. Microbiol. 57, 1028–1034 (2007).
-
Asaf, S. et al. Sphingomonas: from diversity and genomics to functional role in environmental remediation and plant growth. Crit. Rev. Biotechnol. 40, 138–152 (2020).
-
Ambreen, N., Bhatti, H. N. & Bhatti, T. M. Bioleaching of Bauxite by Penicillium simplicissimum. J. Biol. Sci. 2, 793–796 (2002).
-
Franz, A., Burgstaller, W. & Schinner, F. Leaching with Penicillium simplicissimum: Influence of metals and buffers on proton extrusion and citric acid production. Appl. Environ. Microbiol. 57, 769–774 (1991).
-
Amiri, F., Yaghmaei, S. & Mousavi, S. M. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum. Bioresour. Technol. 102, 1567–1573 (2011).
-
Rasoulnia, P., Mousavi, S. M., Rastegar, S. O. & Azargoshasb, H. Fungal leaching of valuable metals from a power plant residual ash using Penicillium simplicissimum: Evaluation of thermal pretreatment and different bioleaching methods. Waste Manag 52, 309–317 (2016).
-
Chen, S. H., Cheow, Y. L., Ng, S. L. & Ting, A. S. Y. Mechanisms for metal removal established via electron microscopy and spectroscopy: a case study on metal tolerant fungi Penicillium simplicissimum. J. Hazard. Mater. 362, 394–402 (2019).
-
Rawlings, D. E. & Johnson, D. B. The microbiology of biomining: development and optimization of mineral-oxidizing microbial consortia. Microbiology 153, 315–324 (2007).
-
McCoy-West, A. J., Millet, M. A. & Burton, K. W. The neodymium stable isotope composition of the silicate Earth and chondrites. Earth Planet. Sci. Lett. 480, 121–132 (2017).
-
Gaft, M., Reisfeld, R. & Panczer, G. Modern Luminescence Spectroscopy of Minerals and Materials. https://doi.org/10.1007/978-3-319-24765-6 (Springer Mineralogy, 2015).
-
Stevens, A. H. et al. Growth, viability, and death of planktonic and biofilm sphingomonas desiccabilis in simulated martian brines. Astrobiology 19, 87–98 (2019).
-
Zuo, R. Biofilms: strategies for metal corrosion inhibition employing microorganisms. Appl. Microbiol. Biotechnol. 76, 1245–1253 (2007).
-
Zuo, R., Kus, E., Mansfeld, F. & Wood, T. K. The importance of live biofilms in corrosion protection. Corros. Sci. 47, 279–287 (2005).
-
Jayaraman, A., Sun, A. K. & Wood, T. K. Characterization of axenic Pseudomonas fragi and Escherichia coli biofilms that inhibit corrosion of SAE 1018 steel. J. Appl. Microbiol. 84, 485–492 (1998).
-
Bellenberg, S. et al. Biofilm formation, communication and interactions of leaching bacteria during colonization of pyrite and sulfur surfaces. Res. Microbiol. 165, 773–781 (2014).
-
Reed, D. W., Fujita, Y., Daubaras, D. L., Jiao, Y. & Thompson, V. S. Bioleaching of rare earth elements from waste phosphors and cracking catalysts. Hydrometallurgy 166, 34–40 (2016).
-
Vailati, A. et al. Diffusion in liquid mixtures. npj Microgravity 9, 1–8 (2023).
-
Huang, B., Li, D. G., Huang, Y. & Liu, C. T. Effects of spaceflight and simulated microgravity on microbial growth and secondary metabolism. Mil. Med. Res. 5, 1–14 (2018).
-
De Gelder, J. et al. Raman spectroscopic analysis of Cupriavidus metallidurans LMG 1195 (CH34) cultured in low-shear microgravity conditions. Microgravity Sci. Technol. 21, 217–223 (2009).
-
Saleh, D. K., Abdollahi, H., Noaparast, M., Nosratabad, A. F. & Tuovinen, O. H. Dissolution of Al from metakaolin with carboxylic acids produced by Aspergillus niger, Penicillium bilaji, Pseudomonas putida, and Pseudomonas koreensis. Hydrometallurgy 186, 235–243 (2019).
-
Panhwar, Q. A., Naher, U. A., Shamshuddin, J., Othman, R. & Latif, M. A. Biochemical and molecular characterization of potential phosphate-solubilizing bacteria in acid sulfate soils and their beneficial effects on rice growth. PLoS One 9, e97241 (2014).
-
Volger, R. et al. Mining moon & mars with microbes: biological approaches to extract iron from Lunar and Martian regolith. Planet. Space Sci. 184, 104850 (2020).
-
Prescott, R. D. et al. Bridging place-based astrobiology education with genomics, including descriptions of three novel bacterial species isolated from Mars analog sites of cultural relevance. Astrobiology 23, 1–20 (2023).
-
Reasoner, D. J. & Geldreich, E. E. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 49, 1–7 (1985).
-
Welten, K. et al. The L3-6 chondritic regolith breccia Northwest Africa (NWA) 869: (II) Noble gases and cosmogenic radionuclides. Meteorit. Planet. Sci. 46, 970–988 (2011).
-
Metzler, K. et al. The L3-6 chondritic regolith breccia Northwest Africa (NWA) 869: (I) Petrology, chemistry, oxygen isotopes, and Ar-Ar age determinations. Meteorit. Planet. Sci. 46, 652–680 (2011).
-
Loudon, C. M. et al. BioRock: new experiments and hardware to investigate microbe–mineral interactions in space. Int. J. Astrobiol. 17, 303–313 (2018).
-
Petrikkou, E. et al. Inoculum standardization for antifungal susceptibility testing of filamentous fungi pathogenic for humans. J. Clin. Microbiol. 39, 1345–1347 (2001).
-
Herlemann, D. P. R. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).
-
Heininger, A. et al. DNase pretreatment of master mix reagents improves the validity of universal 16S rRNA gene PCR results. J. Clin. Microbiol. 41, 1763–1765 (2003).
-
Chetwynd, A. J., Dunn, W. B. & Rodriguez-Blanco, G. Metabolomics: From Fundamentals to Clinical Applications. in Metabolomics: From Fundamentals to Clinical Applications, Advances in Experimental Medicine and Biology (ed. Sussulini, A.) vol. 965 19–44 (Springer International Publishing, 2017).
-
Middleton, S. S. et al. Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth. Biotechnol. Bioeng. 83, 627–637 (2003).
-
Sarafian, M. H. et al. Objective set of criteria for optimization of sample preparation procedures for ultra-high throughput untargeted blood plasma lipid profiling by ultra performance liquid chromatography-mass spectrometry. Anal. Chem. 86, 5766–5774 (2014).
-
Pang, Z. et al. MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49, W388–W396 (2021).
