Microbial synthesis of silver nanoparticles using bacterial supernatants from Brazilian stingless bees with antimicrobial activity

microbial-synthesis-of-silver-nanoparticles-using-bacterial-supernatants-from-brazilian-stingless-bees-with-antimicrobial-activity
Microbial synthesis of silver nanoparticles using bacterial supernatants from Brazilian stingless bees with antimicrobial activity

References

  1. Acar, J. & Röstel, B. Antimicrobial resistance: an overview. Revue Scientifique Et Technique De l’OIE 20, 797–810 (2001).

    Google Scholar 

  2. Varela, M. F. et al. Bacterial resistance to antimicrobial agents. Antibiotics 10, 593 (2021).

    Google Scholar 

  3. Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015). https://doi.org/10.1038/nrmicro3380

    Google Scholar 

  4. Christaki, E., Marcou, M. & Tofarides, A. Antimicrobial resistance in bacteria: Mechanisms, Evolution, and persistence. J. Mol. Evol. 88, 26–40 (2020).

    Google Scholar 

  5. Lima, L. M., Silva, B. N. M., da, Barbosa, G. & Barreiro, E. J. β-lactam antibiotics: an overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 208, 112829 (2020).

    Google Scholar 

  6. Loureiro, R. J., Roque, F., Teixeira Rodrigues, A., Herdeiro, M. T. & Ramalheira, E. Use of antibiotics and bacterial resistances: brief notes on its evolution. Revista Portuguesa De Saude Publica. 34, 77–84 (2016).

    Google Scholar 

  7. Laxminarayan, R. et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 13, 1057–1098 (2013). https://doi.org/10.1016/S1473-3099(13)70318-9

  8. Banin, E., Hughes, D. & Kuipers, O. P. Editorial: bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol. Rev. 41, 450–452 (2017). https://doi.org/10.1093/femsre/fux016 Preprint at.

    Google Scholar 

  9. Kos, V. N. et al. Comparative Genomics of Vancomycin-Resistant Staphylococcus aureus Strains and Their Positions within the Clade Most Commonly Associated with Methicillin-Resistant S. aureus Hospital-Acquired Infection in the United States. mBio 3, (2012).

  10. Johnson, P. D. R. et al. A sustained hospital outbreak of Vancomycin-Resistant Enterococcus faecium bacteremia due to emergence of VanB E. faecium sequence type 203. J. Infect. Dis. 202, 1278–1286 (2010).

    Google Scholar 

  11. Santajit, S. & Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed. Res. Int. 2016. https://doi.org/10.1155/2016/2475067 (2016).

  12. Ma, Y. X. et al. Considerations and caveats in combating ESKAPE pathogens against nosocomial infections. Adv. Sci. 7, 1901872 (2020).

    Google Scholar 

  13. Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S. & Pardesi, K. R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 10, 539 (2019).

    Google Scholar 

  14. Schito, G. C. The importance of the development of antibiotic resistance in Staphylococcus aureus. Clin. Microbiol. Infect. 12, 3–8 (2006).

    Google Scholar 

  15. Guo, Y., Song, G., Sun, M., Wang, J. & Wang, Y. Prevalence and therapies of Antibiotic-Resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 10, 107 (2020).

    Google Scholar 

  16. Reinthaler, F. F. et al. Antibiotic resistance of E. coli in sewage and sludge. Water Res. 37, 1685–1690 (2003).

    Google Scholar 

  17. Xie, J., Lee, J. Y., Wang, D. I. C. & Ting, Y. P. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano. 1, 429–439 (2007).

    Google Scholar 

  18. Zhang, X. F., Liu, Z. G., Shen, W. & Gurunathan, S. Silver nanoparticles: Synthesis, Characterization, Properties, Applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016).

    Google Scholar 

  19. Alharbi, N. S., Alsubhi, N. S. & Felimban, A. I. Green synthesis of silver nanoparticles using medicinal plants: characterization and application. J. Radiat. Res. Appl. Sci. 15, 109–124 (2022).

    Google Scholar 

  20. Dong, Y., Zhu, H., Shen, Y., Zhang, W. & Zhang, L. Antibacterial activity of silver nanoparticles of different particle size against vibrio natriegens. PLoS One. 14, e0222322 (2019).

    Google Scholar 

  21. Loo, Y. Y. et al. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative foodborne pathogens. Front Microbiol 9, 1555 (2018).

  22. Ravichandran, V. et al. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results Phys. 15, 102565 (2019).

    Google Scholar 

  23. Pal, S., Tak, Y. K. & Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-Negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007).

    Google Scholar 

  24. Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005).

    Google Scholar 

  25. Ramalingam, V. et al. Biosynthesis of silver nanoparticles from deep sea bacterium Pseudomonas aeruginosa JQ989348 for antimicrobial, antibiofilm, and cytotoxic activity. J. Basic. Microbiol. 54, 928–936 (2014).

    Google Scholar 

  26. Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H. & Venkataraman, A. Extracellular biosynthesis of silver nanoparticles using the fungus fusarium semitectum. Mater. Res. Bull. 43, 1164–1170 (2008).

    Google Scholar 

  27. Bhainsa, K. C. & D’Souza, S. F. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B Biointerfaces. 47, 160–164 (2006).

    Google Scholar 

  28. Rónavári, A. et al. Green silver and gold nanoparticles: biological synthesis approaches and potentials for biomedical applications. Molecules 26, 844 (2021).

    Google Scholar 

  29. Alsamhary, K. I. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J. Biol. Sci. 27, 2185–2191 (2020).

    Google Scholar 

  30. Yu, X. et al. Green synthesis and characterizations of silver nanoparticles with enhanced antibacterial properties by secondary metabolites of Bacillus subtilis (SDUM301120). Green. Chem. Lett. Rev. 14, 190–203 (2021).

    Google Scholar 

  31. Dakal, T. C., Kumar, A., Majumdar, R. S. & Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7, 1831 (2016).

  32. Kumari, S. C., Dhand, V. & Padma, P. N. in Nanomaterials 259–281Elsevier, (2021). https://doi.org/10.1016/B978-0-12-822401-4.00022-2

  33. Ying, S. et al. Green synthesis of nanoparticles: current developments and limitations. Environ. Technol. Innov. 26, 102336 (2022).

    Google Scholar 

  34. Gupta, D., Boora, A., Thakur, A. & Gupta, T. K. Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environ. Res. 231, 116316 (2023).

    Google Scholar 

  35. Santos, A. C. C. et al. Bacteria, yeasts, and fungi associated with larval food of Brazilian native stingless bees. Sci. Rep. 13, 1–13 (2023).

  36. Solís-Sandí, I. et al. Optimization of the biosynthesis of silver nanoparticles using bacterial extracts and their antimicrobial potential. Biotechnol. Rep. 40, e00816 (2023).

    Google Scholar 

  37. Sastry, M., Mayya, K. S. & Bandyopadhyay, K. pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf. Physicochem Eng. Asp. 127, 221–228 (1997).

    Google Scholar 

  38. Santos, A. C. C. et al. Green synthesis of silver nanoparticle using pollen extract from Tetragonisca angustula a stingless bee. Discover Nano. 19, 92 (2024).

    Google Scholar 

  39. Salari, S., Esmaeilzadeh Bahabadi, S., Samzadeh-Kermani, A. & Yosefzaei, F. In-vitro evaluation of antioxidant and antibacterial potential of greensynthesized silver nanoparticles using prosopis Farcta fruit extract. Iran. J. Pharm. Res. 18, 430–455 (2019).

    Google Scholar 

  40. Mittal, A. K., Bhaumik, J., Kumar, S. & Banerjee, U. C. Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. J. Colloid Interface Sci. 415, 39–47 (2014).

    Google Scholar 

  41. Pilaquinga, F. et al. Synthesis of silver nanoparticles using aqueous leaf extract of mimosa albida (Mimosoideae): characterization and antioxidant activity. Materials 13, 503 (2020).

    Google Scholar 

  42. Khalil, I. et al. Nanoantioxidants: recent trends in antioxidant delivery applications. Antioxidants 9, 24 (2019).

    Google Scholar 

  43. Li, S. et al. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 135, 1914–1919 (2012).

    Google Scholar 

  44. Łepecka, A., Szymański, P., Okoń, A. & Zielińska, D. Antioxidant activity of environmental lactic acid bacteria strains isolated from organic Raw fermented meat products. LWT 174, 114440 (2023).

    Google Scholar 

  45. Xing, J. et al. Determining antioxidant activities of lactobacilli Cell-Free supernatants by cellular antioxidant assay: A comparison with traditional methods. PLoS One. 10, e0119058 (2015).

    Google Scholar 

  46. Singh, J. et al. Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 84 (2018).

    Google Scholar 

  47. kazemi, S. et al. Recent advances in green synthesized nanoparticles: from production to application. Mater. Today Sustain. 24, 100500 (2023).

    Google Scholar 

  48. Chakraborty, A. & Jana, N. R. Vitamin C-Conjugated nanoparticle protects cells from oxidative stress at low doses but induces oxidative stress and cell death at high doses. ACS Appl. Mater. Interfaces. 9, 41807–41817 (2017).

    Google Scholar 

  49. Aiassa, V., Barnes, A. I., Smania, A. M. & Albesa, I. Sublethal Ciprofloxacin treatment leads to resistance via antioxidant systems in proteus mirabilis. FEMS Microbiol. Lett. 327, 25–32 (2012).

    Google Scholar 

  50. Dhaka, A., Chand Mali, S., Sharma, S. & Trivedi, R. A review on biological synthesis of silver nanoparticles and their potential applications. Results Chem. 6, 101108 (2023).

    Google Scholar 

  51. Saifuddin, N., Wong, C. W. & Yasumira, A. A. N. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J. Chem. 6, 61–70 (2009).

    Google Scholar 

  52. Naseer, Q. A. et al. Synthesis of silver nanoparticles using Lactobacillus bulgaricus and assessment of their antibacterial potential. Brazilian J. Biology 82, e232434 (2022).

  53. Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).

    Google Scholar 

  54. Helmlinger, J. et al. Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv. 6, 18490–18501 (2016).

    Google Scholar 

  55. Clogston, J. D. & Patri, A. K. in 63–70 (2011). https://doi.org/10.1007/978-1-60327-198-1_6

  56. Rezaei, A. et al. Insights into the effects of pore size distribution on the flowing behavior of carbonate rocks: linking a Nano-Based enhanced oil recovery method to rock typing. Nanomaterials 10, 972 (2020).

    Google Scholar 

  57. Gole, A. et al. Pepsin–Gold colloid conjugates: Preparation, Characterization, and enzymatic activity. Langmuir 17, 1674–1679 (2001).

    Google Scholar 

  58. Tarhini, M., Greige-Gerges, H. & Elaissari, A. Protein-based nanoparticles: from Preparation to encapsulation of active molecules. Int. J. Pharm. 522, 172–197 (2017).

    Google Scholar 

  59. Spicer, C. D., Jumeaux, C., Gupta, B. & Stevens, M. M. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem. Soc. Rev. 47, 3574–3620 (2018).

    Google Scholar 

  60. Beveridge, T. J. Structures of Gram-Negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725–4733 (1999).

    Google Scholar 

  61. Fu, G., Vary, P. S. & Lin, C. T. Anatase TiO 2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B. 109, 8889–8898 (2005).

    Google Scholar 

  62. Santos, A. C. C. et al. Antimicrobial activity of supernatants produced by bacteria isolated from Brazilian stingless bee’s larval food. BMC Microbiol 22, 127 (2022).

  63. Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in china: a Microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).

    Google Scholar 

  64. Prabhu, S. & Poulose, E. K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 32 (2012).

    Google Scholar 

  65. Logaranjan, K., Raiza, A. J., Gopinath, S. C. B., Chen, Y. & Pandian, K. Shape- and Size-Controlled synthesis of silver nanoparticles using Aloe Vera plant extract and their antimicrobial activity. Nanoscale Res. Lett. 11, 520 (2016).

    Google Scholar 

  66. Kalita, S. et al. Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater. Sci. Engineering: C. 61, 720–727 (2016).

    Google Scholar 

  67. Balderrama-González, A. S. et al. Antimicrobial resistance and inorganic nanoparticles. Int. J. Mol. Sci. 22, 12890 (2021).

    Google Scholar 

  68. Yuan, Y. G., Peng, Q. L. & Gurunathan, S. Effects of silver nanoparticles on multiple Drug-Resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected goats: an alternative approach for antimicrobial therapy. Int. J. Mol. Sci. 18, 569 (2017).

    Google Scholar 

  69. Pati, R. et al. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 10, 1195–1208 (2014).

    Google Scholar 

  70. Severino, P. et al. Elsevier,. in Nanotechnology and Regenerative Medicine 551–573 (2023). https://doi.org/10.1016/B978-0-323-90471-1.00007-4

  71. Mao, B. H., Chen, Z. Y., Wang, Y. J. & Yan, S. J. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci. Rep. 8, 2445 (2018).

    Google Scholar 

  72. Tortella, G. R. et al. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater. 390, 121974 (2020).

    Google Scholar 

  73. Kim, T. et al. Size-dependent cellular toxicity of silver nanoparticles. J. Biomed. Mater. Res. A. 100A, 1033–1043 (2012).

    Google Scholar 

  74. You, C. et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol. Biol. Rep. 39, 9193–9201 (2012).

    Google Scholar 

  75. Lokina, S., Stephen, A., Kaviyarasan, V., Arulvasu, C. & Narayanan, V. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Eur. J. Med. Chem. 76, 256–263 (2014).

    Google Scholar 

  76. Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D. S. & Autrup, H. Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicol. Lett. 208, 286–292 (2012).

    Google Scholar 

  77. Sambale, F. et al. Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines. J. Nanomater 2015, (2015).

  78. Jaswal, T. & Gupta, J. A review on the toxicity of silver nanoparticles on human health. Mater. Today Proc. 81, 859–863 (2023).

    Google Scholar 

  79. Salem, S. S. & Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol. Trace Elem. Res. 199, 344–370 (2021).

    Google Scholar 

  80. Ameh, T. et al. Silver and copper nanoparticles induce oxidative stress in bacteria and mammalian cells. Nanomaterials 12, 2402 (2022).

    Google Scholar 

  81. Sanyasi, S. et al. Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci. Rep. 6, 24929 (2016).

    Google Scholar 

  82. Shreyash, N. et al. Green synthesis of nanoparticles and their biomedical applications: A review. ACS Appl. Nano Mater. 4, 11428–11457 (2021).

    Google Scholar 

  83. Singh, H. et al. Revisiting the green synthesis of nanoparticles: Uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. Int. J. Nanomed. 18, 4727–4750 (2023).

    Google Scholar 

  84. Zhang, M. & Zhao, X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 162, 1414–1428 (2020).

    Google Scholar 

  85. Bernardo, M. P., Pasquini, D. & Mattoso, L. H. C. Enhanced antibacterial activity of wound dressings based on alginate/hydroxyapatite modified with copper and Naproxen. J. Mater. Res. 39, 762–773 (2024).

    Google Scholar 

  86. Rescignano, N. et al. Preparation of alginate hydrogels containing silver nanoparticles: a facile approach for antibacterial applications. Polym. Int. 65, 921–926 (2016).

    Google Scholar 

  87. Diniz, F. et al. Silver Nanoparticles-Composing Alginate/Gelatine hydrogel improves wound healing in vivo. Nanomaterials 10, 390 (2020).

    Google Scholar 

  88. Obradovic, B., Stojkovska, J. & Jovanovic, Z. Miskovic-Stankovic, V. Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles. J. Mater. Sci. Mater. Med. 23, 99–107 (2012).

    Google Scholar 

  89. Urzedo, A. L. et al. Cytotoxicity and antibacterial activity of alginate hydrogel containing nitric oxide donor and silver nanoparticles for topical applications. ACS Biomater. Sci. Eng. 6, 2117–2134 (2020).

    Google Scholar 

  90. Dai, Q., Jia, R., Li, H., Yang, J. & Qin, Z. Preparation and application of Sustained-Release antibacterial alginate hydrogels by loading Plant-Mediated silver nanoparticles. ACS Sustain. Chem. Eng. 12, 1388–1404 (2024).

    Google Scholar 

  91. Zakia, M. et al. Development of silver nanoparticle-based hydrogel composites for antimicrobial activity. Green. Chem. Lett. Rev. 13, 34–40 (2020).

    Google Scholar 

  92. Santos, A. C. C. et al. Antimicrobial activity of supernatants produced by bacteria isolated from Brazilian stingless bee’s larval food. BMC Microbiology 22, 1–9 (2022).

  93. Bittar, V. P. et al. Bioactive compounds from the leaves of maytenus Ilicifolia Mart. Ex reissek: Inhibition of LDL oxidation, glycation, lipid peroxidation, target enzymes, and microbial growth. J. Ethnopharmacol. 319, 117315 (2024).

    Google Scholar 

  94. dos Santos, N. C. L. et al. Antioxidant and anti-Alzheimer’s potential of Tetragonisca angustula (Jataí) stingless bee pollen. Sci. Rep. 14, 308 (2024).

    Google Scholar 

  95. Hudzicki, J. Kirby-Bauer disk diffusion susceptibility test protocol. Am. Soc. Microbiol. 15, 55–63 (2009).

    Google Scholar 

  96. Bernardes, L. M. M. et al. Green synthesis, characterization, and antimicrobial activity of silver nanoparticles from water-soluble fractions of Brazilian Kefir. Sci. Rep. 15, 10626 (2025).

    Google Scholar 

  97. Ong, C. et al. Silver nanoparticles disrupt germline stem cell maintenance in the drosophila testis. Sci. Rep. 6, 20632 (2016).

    Google Scholar 

  98. Munhoz, D. R., Bernardo, M. P., Malafatti, J. O. D., Moreira, F. K. V. & Mattoso, L. H. C. Alginate films functionalized with silver sulfadiazine-loaded [Mg-Al] layered double hydroxide as antimicrobial wound dressing. Int. J. Biol. Macromol. 141, 504–510 (2019).

    Google Scholar 

  99. Bernardo, M. P. et al. Fabrication of antimicrobial cellulose and silver niobate aerogels for enhanced tissue regeneration. ACS Omega. 10, 15493–15502 (2025).

    Google Scholar 

Download references