References
-
Acar, J. & Röstel, B. Antimicrobial resistance: an overview. Revue Scientifique Et Technique De l’OIE 20, 797–810 (2001).
-
Varela, M. F. et al. Bacterial resistance to antimicrobial agents. Antibiotics 10, 593 (2021).
-
Blair, J. M. A., Webber, M. A., Baylay, A. J., Ogbolu, D. O. & Piddock, L. J. V. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51 (2015). https://doi.org/10.1038/nrmicro3380
-
Christaki, E., Marcou, M. & Tofarides, A. Antimicrobial resistance in bacteria: Mechanisms, Evolution, and persistence. J. Mol. Evol. 88, 26–40 (2020).
-
Lima, L. M., Silva, B. N. M., da, Barbosa, G. & Barreiro, E. J. β-lactam antibiotics: an overview from a medicinal chemistry perspective. Eur. J. Med. Chem. 208, 112829 (2020).
-
Loureiro, R. J., Roque, F., Teixeira Rodrigues, A., Herdeiro, M. T. & Ramalheira, E. Use of antibiotics and bacterial resistances: brief notes on its evolution. Revista Portuguesa De Saude Publica. 34, 77–84 (2016).
-
Laxminarayan, R. et al. Antibiotic resistance-the need for global solutions. Lancet Infect Dis. 13, 1057–1098 (2013). https://doi.org/10.1016/S1473-3099(13)70318-9
-
Banin, E., Hughes, D. & Kuipers, O. P. Editorial: bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol. Rev. 41, 450–452 (2017). https://doi.org/10.1093/femsre/fux016 Preprint at.
-
Kos, V. N. et al. Comparative Genomics of Vancomycin-Resistant Staphylococcus aureus Strains and Their Positions within the Clade Most Commonly Associated with Methicillin-Resistant S. aureus Hospital-Acquired Infection in the United States. mBio 3, (2012).
-
Johnson, P. D. R. et al. A sustained hospital outbreak of Vancomycin-Resistant Enterococcus faecium bacteremia due to emergence of VanB E. faecium sequence type 203. J. Infect. Dis. 202, 1278–1286 (2010).
-
Santajit, S. & Indrawattana, N. Mechanisms of Antimicrobial Resistance in ESKAPE Pathogens. Biomed. Res. Int. 2016. https://doi.org/10.1155/2016/2475067 (2016).
-
Ma, Y. X. et al. Considerations and caveats in combating ESKAPE pathogens against nosocomial infections. Adv. Sci. 7, 1901872 (2020).
-
Mulani, M. S., Kamble, E. E., Kumkar, S. N., Tawre, M. S. & Pardesi, K. R. Emerging strategies to combat ESKAPE pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 10, 539 (2019).
-
Schito, G. C. The importance of the development of antibiotic resistance in Staphylococcus aureus. Clin. Microbiol. Infect. 12, 3–8 (2006).
-
Guo, Y., Song, G., Sun, M., Wang, J. & Wang, Y. Prevalence and therapies of Antibiotic-Resistance in Staphylococcus aureus. Front. Cell. Infect. Microbiol. 10, 107 (2020).
-
Reinthaler, F. F. et al. Antibiotic resistance of E. coli in sewage and sludge. Water Res. 37, 1685–1690 (2003).
-
Xie, J., Lee, J. Y., Wang, D. I. C. & Ting, Y. P. Silver nanoplates: from biological to biomimetic synthesis. ACS Nano. 1, 429–439 (2007).
-
Zhang, X. F., Liu, Z. G., Shen, W. & Gurunathan, S. Silver nanoparticles: Synthesis, Characterization, Properties, Applications, and therapeutic approaches. Int. J. Mol. Sci. 17, 1534 (2016).
-
Alharbi, N. S., Alsubhi, N. S. & Felimban, A. I. Green synthesis of silver nanoparticles using medicinal plants: characterization and application. J. Radiat. Res. Appl. Sci. 15, 109–124 (2022).
-
Dong, Y., Zhu, H., Shen, Y., Zhang, W. & Zhang, L. Antibacterial activity of silver nanoparticles of different particle size against vibrio natriegens. PLoS One. 14, e0222322 (2019).
-
Loo, Y. Y. et al. In vitro antimicrobial activity of green synthesized silver nanoparticles against selected Gram-negative foodborne pathogens. Front Microbiol 9, 1555 (2018).
-
Ravichandran, V. et al. Green synthesis, characterization, antibacterial, antioxidant and photocatalytic activity of Parkia speciosa leaves extract mediated silver nanoparticles. Results Phys. 15, 102565 (2019).
-
Pal, S., Tak, Y. K. & Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the Gram-Negative bacterium Escherichia coli. Appl. Environ. Microbiol. 73, 1712–1720 (2007).
-
Morones, J. R. et al. The bactericidal effect of silver nanoparticles. Nanotechnology 16, 2346–2353 (2005).
-
Ramalingam, V. et al. Biosynthesis of silver nanoparticles from deep sea bacterium Pseudomonas aeruginosa JQ989348 for antimicrobial, antibiofilm, and cytotoxic activity. J. Basic. Microbiol. 54, 928–936 (2014).
-
Basavaraja, S., Balaji, S. D., Lagashetty, A., Rajasab, A. H. & Venkataraman, A. Extracellular biosynthesis of silver nanoparticles using the fungus fusarium semitectum. Mater. Res. Bull. 43, 1164–1170 (2008).
-
Bhainsa, K. C. & D’Souza, S. F. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. B Biointerfaces. 47, 160–164 (2006).
-
Rónavári, A. et al. Green silver and gold nanoparticles: biological synthesis approaches and potentials for biomedical applications. Molecules 26, 844 (2021).
-
Alsamhary, K. I. Eco-friendly synthesis of silver nanoparticles by Bacillus subtilis and their antibacterial activity. Saudi J. Biol. Sci. 27, 2185–2191 (2020).
-
Yu, X. et al. Green synthesis and characterizations of silver nanoparticles with enhanced antibacterial properties by secondary metabolites of Bacillus subtilis (SDUM301120). Green. Chem. Lett. Rev. 14, 190–203 (2021).
-
Dakal, T. C., Kumar, A., Majumdar, R. S. & Yadav, V. Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7, 1831 (2016).
-
Kumari, S. C., Dhand, V. & Padma, P. N. in Nanomaterials 259–281Elsevier, (2021). https://doi.org/10.1016/B978-0-12-822401-4.00022-2
-
Ying, S. et al. Green synthesis of nanoparticles: current developments and limitations. Environ. Technol. Innov. 26, 102336 (2022).
-
Gupta, D., Boora, A., Thakur, A. & Gupta, T. K. Green and sustainable synthesis of nanomaterials: recent advancements and limitations. Environ. Res. 231, 116316 (2023).
-
Santos, A. C. C. et al. Bacteria, yeasts, and fungi associated with larval food of Brazilian native stingless bees. Sci. Rep. 13, 1–13 (2023).
-
Solís-Sandí, I. et al. Optimization of the biosynthesis of silver nanoparticles using bacterial extracts and their antimicrobial potential. Biotechnol. Rep. 40, e00816 (2023).
-
Sastry, M., Mayya, K. S. & Bandyopadhyay, K. pH dependent changes in the optical properties of carboxylic acid derivatized silver colloidal particles. Colloids Surf. Physicochem Eng. Asp. 127, 221–228 (1997).
-
Santos, A. C. C. et al. Green synthesis of silver nanoparticle using pollen extract from Tetragonisca angustula a stingless bee. Discover Nano. 19, 92 (2024).
-
Salari, S., Esmaeilzadeh Bahabadi, S., Samzadeh-Kermani, A. & Yosefzaei, F. In-vitro evaluation of antioxidant and antibacterial potential of greensynthesized silver nanoparticles using prosopis Farcta fruit extract. Iran. J. Pharm. Res. 18, 430–455 (2019).
-
Mittal, A. K., Bhaumik, J., Kumar, S. & Banerjee, U. C. Biosynthesis of silver nanoparticles: Elucidation of prospective mechanism and therapeutic potential. J. Colloid Interface Sci. 415, 39–47 (2014).
-
Pilaquinga, F. et al. Synthesis of silver nanoparticles using aqueous leaf extract of mimosa albida (Mimosoideae): characterization and antioxidant activity. Materials 13, 503 (2020).
-
Khalil, I. et al. Nanoantioxidants: recent trends in antioxidant delivery applications. Antioxidants 9, 24 (2019).
-
Li, S. et al. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 135, 1914–1919 (2012).
-
Łepecka, A., Szymański, P., Okoń, A. & Zielińska, D. Antioxidant activity of environmental lactic acid bacteria strains isolated from organic Raw fermented meat products. LWT 174, 114440 (2023).
-
Xing, J. et al. Determining antioxidant activities of lactobacilli Cell-Free supernatants by cellular antioxidant assay: A comparison with traditional methods. PLoS One. 10, e0119058 (2015).
-
Singh, J. et al. Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J. Nanobiotechnol. 16, 84 (2018).
-
kazemi, S. et al. Recent advances in green synthesized nanoparticles: from production to application. Mater. Today Sustain. 24, 100500 (2023).
-
Chakraborty, A. & Jana, N. R. Vitamin C-Conjugated nanoparticle protects cells from oxidative stress at low doses but induces oxidative stress and cell death at high doses. ACS Appl. Mater. Interfaces. 9, 41807–41817 (2017).
-
Aiassa, V., Barnes, A. I., Smania, A. M. & Albesa, I. Sublethal Ciprofloxacin treatment leads to resistance via antioxidant systems in proteus mirabilis. FEMS Microbiol. Lett. 327, 25–32 (2012).
-
Dhaka, A., Chand Mali, S., Sharma, S. & Trivedi, R. A review on biological synthesis of silver nanoparticles and their potential applications. Results Chem. 6, 101108 (2023).
-
Saifuddin, N., Wong, C. W. & Yasumira, A. A. N. Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J. Chem. 6, 61–70 (2009).
-
Naseer, Q. A. et al. Synthesis of silver nanoparticles using Lactobacillus bulgaricus and assessment of their antibacterial potential. Brazilian J. Biology 82, e232434 (2022).
-
Petros, R. A. & DeSimone, J. M. Strategies in the design of nanoparticles for therapeutic applications. Nat. Rev. Drug Discov. 9, 615–627 (2010).
-
Helmlinger, J. et al. Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv. 6, 18490–18501 (2016).
-
Clogston, J. D. & Patri, A. K. in 63–70 (2011). https://doi.org/10.1007/978-1-60327-198-1_6
-
Rezaei, A. et al. Insights into the effects of pore size distribution on the flowing behavior of carbonate rocks: linking a Nano-Based enhanced oil recovery method to rock typing. Nanomaterials 10, 972 (2020).
-
Gole, A. et al. Pepsin–Gold colloid conjugates: Preparation, Characterization, and enzymatic activity. Langmuir 17, 1674–1679 (2001).
-
Tarhini, M., Greige-Gerges, H. & Elaissari, A. Protein-based nanoparticles: from Preparation to encapsulation of active molecules. Int. J. Pharm. 522, 172–197 (2017).
-
Spicer, C. D., Jumeaux, C., Gupta, B. & Stevens, M. M. Peptide and protein nanoparticle conjugates: versatile platforms for biomedical applications. Chem. Soc. Rev. 47, 3574–3620 (2018).
-
Beveridge, T. J. Structures of Gram-Negative cell walls and their derived membrane vesicles. J. Bacteriol. 181, 4725–4733 (1999).
-
Fu, G., Vary, P. S. & Lin, C. T. Anatase TiO 2 nanocomposites for antimicrobial coatings. J. Phys. Chem. B. 109, 8889–8898 (2005).
-
Santos, A. C. C. et al. Antimicrobial activity of supernatants produced by bacteria isolated from Brazilian stingless bee’s larval food. BMC Microbiol 22, 127 (2022).
-
Liu, Y. Y. et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in china: a Microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168 (2016).
-
Prabhu, S. & Poulose, E. K. Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 32 (2012).
-
Logaranjan, K., Raiza, A. J., Gopinath, S. C. B., Chen, Y. & Pandian, K. Shape- and Size-Controlled synthesis of silver nanoparticles using Aloe Vera plant extract and their antimicrobial activity. Nanoscale Res. Lett. 11, 520 (2016).
-
Kalita, S. et al. Amoxicillin functionalized gold nanoparticles reverts MRSA resistance. Mater. Sci. Engineering: C. 61, 720–727 (2016).
-
Balderrama-González, A. S. et al. Antimicrobial resistance and inorganic nanoparticles. Int. J. Mol. Sci. 22, 12890 (2021).
-
Yuan, Y. G., Peng, Q. L. & Gurunathan, S. Effects of silver nanoparticles on multiple Drug-Resistant strains of Staphylococcus aureus and Pseudomonas aeruginosa from Mastitis-Infected goats: an alternative approach for antimicrobial therapy. Int. J. Mol. Sci. 18, 569 (2017).
-
Pati, R. et al. Topical application of zinc oxide nanoparticles reduces bacterial skin infection in mice and exhibits antibacterial activity by inducing oxidative stress response and cell membrane disintegration in macrophages. Nanomedicine 10, 1195–1208 (2014).
-
Severino, P. et al. Elsevier,. in Nanotechnology and Regenerative Medicine 551–573 (2023). https://doi.org/10.1016/B978-0-323-90471-1.00007-4
-
Mao, B. H., Chen, Z. Y., Wang, Y. J. & Yan, S. J. Silver nanoparticles have lethal and sublethal adverse effects on development and longevity by inducing ROS-mediated stress responses. Sci. Rep. 8, 2445 (2018).
-
Tortella, G. R. et al. Silver nanoparticles: toxicity in model organisms as an overview of its hazard for human health and the environment. J. Hazard. Mater. 390, 121974 (2020).
-
Kim, T. et al. Size-dependent cellular toxicity of silver nanoparticles. J. Biomed. Mater. Res. A. 100A, 1033–1043 (2012).
-
You, C. et al. The progress of silver nanoparticles in the antibacterial mechanism, clinical application and cytotoxicity. Mol. Biol. Rep. 39, 9193–9201 (2012).
-
Lokina, S., Stephen, A., Kaviyarasan, V., Arulvasu, C. & Narayanan, V. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. Eur. J. Med. Chem. 76, 256–263 (2014).
-
Beer, C., Foldbjerg, R., Hayashi, Y., Sutherland, D. S. & Autrup, H. Toxicity of silver nanoparticles—Nanoparticle or silver ion? Toxicol. Lett. 208, 286–292 (2012).
-
Sambale, F. et al. Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines. J. Nanomater 2015, (2015).
-
Jaswal, T. & Gupta, J. A review on the toxicity of silver nanoparticles on human health. Mater. Today Proc. 81, 859–863 (2023).
-
Salem, S. S. & Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol. Trace Elem. Res. 199, 344–370 (2021).
-
Ameh, T. et al. Silver and copper nanoparticles induce oxidative stress in bacteria and mammalian cells. Nanomaterials 12, 2402 (2022).
-
Sanyasi, S. et al. Polysaccharide-capped silver nanoparticles inhibit biofilm formation and eliminate multi-drug-resistant bacteria by disrupting bacterial cytoskeleton with reduced cytotoxicity towards mammalian cells. Sci. Rep. 6, 24929 (2016).
-
Shreyash, N. et al. Green synthesis of nanoparticles and their biomedical applications: A review. ACS Appl. Nano Mater. 4, 11428–11457 (2021).
-
Singh, H. et al. Revisiting the green synthesis of nanoparticles: Uncovering influences of plant extracts as reducing agents for enhanced synthesis efficiency and its biomedical applications. Int. J. Nanomed. 18, 4727–4750 (2023).
-
Zhang, M. & Zhao, X. Alginate hydrogel dressings for advanced wound management. Int. J. Biol. Macromol. 162, 1414–1428 (2020).
-
Bernardo, M. P., Pasquini, D. & Mattoso, L. H. C. Enhanced antibacterial activity of wound dressings based on alginate/hydroxyapatite modified with copper and Naproxen. J. Mater. Res. 39, 762–773 (2024).
-
Rescignano, N. et al. Preparation of alginate hydrogels containing silver nanoparticles: a facile approach for antibacterial applications. Polym. Int. 65, 921–926 (2016).
-
Diniz, F. et al. Silver Nanoparticles-Composing Alginate/Gelatine hydrogel improves wound healing in vivo. Nanomaterials 10, 390 (2020).
-
Obradovic, B., Stojkovska, J. & Jovanovic, Z. Miskovic-Stankovic, V. Novel alginate based nanocomposite hydrogels with incorporated silver nanoparticles. J. Mater. Sci. Mater. Med. 23, 99–107 (2012).
-
Urzedo, A. L. et al. Cytotoxicity and antibacterial activity of alginate hydrogel containing nitric oxide donor and silver nanoparticles for topical applications. ACS Biomater. Sci. Eng. 6, 2117–2134 (2020).
-
Dai, Q., Jia, R., Li, H., Yang, J. & Qin, Z. Preparation and application of Sustained-Release antibacterial alginate hydrogels by loading Plant-Mediated silver nanoparticles. ACS Sustain. Chem. Eng. 12, 1388–1404 (2024).
-
Zakia, M. et al. Development of silver nanoparticle-based hydrogel composites for antimicrobial activity. Green. Chem. Lett. Rev. 13, 34–40 (2020).
-
Santos, A. C. C. et al. Antimicrobial activity of supernatants produced by bacteria isolated from Brazilian stingless bee’s larval food. BMC Microbiology 22, 1–9 (2022).
-
Bittar, V. P. et al. Bioactive compounds from the leaves of maytenus Ilicifolia Mart. Ex reissek: Inhibition of LDL oxidation, glycation, lipid peroxidation, target enzymes, and microbial growth. J. Ethnopharmacol. 319, 117315 (2024).
-
dos Santos, N. C. L. et al. Antioxidant and anti-Alzheimer’s potential of Tetragonisca angustula (Jataí) stingless bee pollen. Sci. Rep. 14, 308 (2024).
-
Hudzicki, J. Kirby-Bauer disk diffusion susceptibility test protocol. Am. Soc. Microbiol. 15, 55–63 (2009).
-
Bernardes, L. M. M. et al. Green synthesis, characterization, and antimicrobial activity of silver nanoparticles from water-soluble fractions of Brazilian Kefir. Sci. Rep. 15, 10626 (2025).
-
Ong, C. et al. Silver nanoparticles disrupt germline stem cell maintenance in the drosophila testis. Sci. Rep. 6, 20632 (2016).
-
Munhoz, D. R., Bernardo, M. P., Malafatti, J. O. D., Moreira, F. K. V. & Mattoso, L. H. C. Alginate films functionalized with silver sulfadiazine-loaded [Mg-Al] layered double hydroxide as antimicrobial wound dressing. Int. J. Biol. Macromol. 141, 504–510 (2019).
-
Bernardo, M. P. et al. Fabrication of antimicrobial cellulose and silver niobate aerogels for enhanced tissue regeneration. ACS Omega. 10, 15493–15502 (2025).
