References
-
Poewe, W. et al. Parkinson disease. Nat. Rev. Dis. Prim. 3, 1–21 (2017).
-
G. B. D 2016 Neurology Collaborators. Global, regional, and national burden of neurological disorders, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 18, 459–480 (2019).
-
Marras, C. et al. Prevalence of Parkinson’s disease across North America. npj Parkinson’s. Dis. 4, 1–7 (2018).
-
Braak, H. et al. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol. Aging 24, 197–211 (2003).
-
Pearce, R. K. B., Hawkes, C. H. & Daniel, S. E. The anterior olfactory nucleus in Parkinson’s disease. Mov. Disord. 10, 283–287 (1995).
-
LeWitt, P. A. Levodopa therapy for Parkinson’s disease: pharmacokinetics and pharmacodynamics. Mov. Disord. 30, 64–72 (2015).
-
Shulman, L. M., Taback, R. L., Bean, J. & Weiner, W. J. Comorbidity of the nonmotor symptoms of Parkinson’s disease. Mov. Disord. 16, 507–510 (2001).
-
Damier, P., Hirsch, E. C., Agid, Y. & Graybiel, A. M. The substantia nigra of the human brain: II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease. Brain 122, 1437–1448 (1999).
-
Morales, I. et al. Neuroglial transmitophagy and Parkinson’s disease. Glia 68, 2277–2299 (2020).
-
Sliter, D. A. et al. Parkin and PINK1 mitigate STING-induced inflammation. Nature 561, 258–262 (2018).
-
Kouli. et al. 2018).
-
Dickson, D. W. Parkinson’s disease and parkinsonism: neuropathology. Cold Spring Harb. Perspect. Med 2, a009258 (2012).
-
Brettschneider, J., Tredici, K. D., Lee, V. M.-Y. & Trojanowski, J. Q. Spreading of pathology in neurodegenerative diseases: a focus on human studies. Nat. Rev. Neurosci. 16, 109–120 (2015).
-
Luk, K. C. et al. Intracerebral inoculation of pathological α-synuclein initiates a rapidly progressive neurodegenerative α-synucleinopathy in mice. J. Exp. Med 209, 975–986 (2012).
-
Jucker, M. & Walker, L. C. Propagation and spread of pathogenic protein assemblies in neurodegenerative diseases. Nat. Neurosci. 21, 1341–1349 (2018).
-
Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M. & Goedert, M. -Synuclein in filamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc. Natl. Acad. Sci. 95, 6469–6473 (1998).
-
Goedert, M., Spillantini, M. G., Del Tredici, K. & Braak, H. 100 years of Lewy pathology. Nat. Rev. Neurol. 9, 13–24 (2013).
-
Wakabayashi, K., Tanji, K., Mori, F. & Takahashi, H. The Lewy body in Parkinson’s disease: Molecules implicated in the formation and degradation of α-synuclein aggregates. https://onlinelibrary.wiley.com/doi/10.1111/j.1440-1789.2007.00803.x (2007).
-
Henderson, M. X. et al. Spread of α-synuclein pathology through the brain connectome is modulated by selective vulnerability and predicted by network analysis. Nat. Neurosci. 22, 1248–1257 (2019).
-
Luna, E. & Luk, K. C. Bent out of shape: α-Synuclein misfolding and the convergence of pathogenic pathways in Parkinson’s disease. FEBS Lett. 589, 3749–3759 (2015).
-
Luk, K. C. et al. Exogenous α-synuclein fibrils seed the formation of Lewy body-like intracellular inclusions in cultured cells. Proc. Natl. Acad. Sci. 106, 20051–20056 (2009).
-
Prusiner, S. B. et al. Evidence for α-synuclein prions causing multiple system atrophy in humans with parkinsonism. Proc. Natl. Acad. Sci. 112, E5308–E5317 (2015).
-
Sacino, A. N. et al. Intramuscular injection of α-synuclein induces CNS α-synuclein pathology and a rapid-onset motor phenotype in transgenic mice. Proc. Natl. Acad. Sci. 111, 10732–10737 (2014).
-
Ferreira, N. et al. Trans-synaptic spreading of alpha-synuclein pathology through sensory afferents leads to sensory nerve degeneration and neuropathic pain. acta neuropathol. commun. 9, 31 (2021).
-
Kordower, J. H., Chu, Y., Hauser, R. A., Freeman, T. B. & Olanow, C. W. Lewy body–like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat. Med 14, 504–506 (2008).
-
Li, J.-Y. et al. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat. Med 14, 501–503 (2008).
-
Guan, J. et al. Vascular degeneration in Parkinson’s disease. Brain Pathol. 23, 154–164 (2013).
-
Pediaditakis, I. et al. Modeling alpha-synuclein pathology in a human brain-chip to assess blood-brain barrier disruption. Nat. Commun. 12, 5907 (2021).
-
Kortekaas, R. et al. Blood–brain barrier dysfunction in Parkinsonian midbrain in vivo. Ann. Neurol. 57, 176–179 (2005).
-
Rektor, I. et al. Impairment of brain vessels may contribute to mortality in patients with Parkinson’s disease. Mov. Disord. 27, 1169–1172 (2012).
-
Paul, G. & Elabi, O. F. Microvascular Changes in Parkinson’s Disease- Focus on the Neurovascular Unit. Front. Aging Neurosci. 14, 853372 (2022).
-
Issidorides, M. R. Neuronal vascular relationships in the zona compacta of normal and Parkinsonian substantia nigra. Brain Res. 25, 289–299 (1971).
-
Yang, P. et al. String vessel formation is increased in the brain of Parkinson disease. J. Parkinson’s. Dis. 5, 821–836 (2015).
-
Brown, W. R. A review of string vessels or collapsed, empty basement membrane tubes. J. Alzheimer’s. Dis. 21, 725–739 (2010).
-
Zhang, C. et al. Vascular, flow and perfusion abnormalities in Parkinson’s disease. Parkinsonism Relat. Disord. 73, 8–13 (2020).
-
Al-Bachari, S., Naish, J. H., Parker, G. J. M., Emsley, H. C. A. & Parkes, L. M. Blood–brain barrier leakage is increased in Parkinson’s disease. Front. Physiol. 11, 593026 (2020).
-
Laganà, M. M. et al. Multimodal evaluation of neurovascular functionality in early Parkinson’s Disease. Front. Neurol. 11, 831 (2020).
-
Farkas, E., De Jong, G. I., de Vos, R. A., Jansen Steur, E. N. & Luiten, P. G. Pathological features of cerebral cortical capillaries are doubled in Alzheimer’s disease and Parkinson’s disease. Acta Neuropathol. 100, 395–402 (2000).
-
Rite, I., Machado, A., Cano, J. & Venero, J. L. Blood–brain barrier disruption induces in vivo degeneration of nigral dopaminergic neurons. J. Neurochem. 101, 1567–1582 (2007).
-
Elabi, O. et al. Human α-synuclein overexpression in a mouse model of Parkinson’s disease leads to vascular pathology, blood brain barrier leakage and pericyte activation. Sci. Rep. 11, 1120 (2021).
-
Faucheux, B. A., Bonnet, A. M., Agid, Y. & Hirsch, E. C. Blood vessels change in the mesencephalon of patients with Parkinson’s disease. Lancet 353, 981–982 (1999).
-
Huang, R. et al. Endothelial LRP1-ICD accelerates cognition-associated alpha-synuclein pathology and neurodegeneration through PARP1 activation in a mouse model of Parkinson’s disease. Mol. Neurobiol. 60, 979–1003 (2023).
-
Vandendriessche, C. et al. The spreading and effects of human recombinant α-synuclein preformed fibrils in the cerebrospinal fluid of mice. eNeuro. https://www.eneuro.org/content/11/3/ENEURO.0024-23.2024 (2024).
-
Lan, G. et al. Astrocytic VEGFA: an essential mediator in blood–brain-barrier disruption in Parkinson’s disease. Glia 70, 337–353 (2022).
-
Lau, K., Porschen, L. T., Richter, F. & Gericke, B. Microvascular blood-brain barrier alterations in isolated brain capillaries of mice over-expressing alpha-synuclein (Thy1-aSyn line 61). Neurobiol. Dis. 187, 106298 (2023).
-
Recasens, A., Ulusoy, A., Kahle, P. J., Di Monte, D. A. & Dehay, B. In vivo models of alpha-synuclein transmission and propagation. Cell Tissue Res 373, 183–193 (2018).
-
Potashkin, J. A., Blume, S. R. & Runkle, N. K. Limitations of animal models of Parkinson’s disease. Parkinsons Dis. 2011, 658083 (2010).
-
Kuan, W.-L. et al. α-Synuclein pre-formed fibrils impair tight junction protein expression without affecting cerebral endothelial cell function. Exp. Neurol. 285, 72–81 (2016).
-
Haruwaka, K. et al. Dual microglia effects on blood brain barrier permeability induced by systemic inflammation. Nat. Commun. 10, 5816 (2019).
-
Hourfar, H. et al. The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells. Int. J. Biol. Macromol. 229, 305–320 (2023).
-
Banks, W. A., Kovac, A. & Morofuji, Y. Neurovascular unit crosstalk: pericytes and astrocytes modify cytokine secretion patterns of brain endothelial cells. J. Cereb. Blood Flow. Metab. 38, 1104–1118 (2018).
-
Khalid Iqbal, M. et al. The impact of the blood–brain barrier and its dysfunction in Parkinson’s disease: contributions to pathogenesis and progression. ACS Omega 9, 45663–45672 (2024).
-
Bogale, T. A. et al. Alpha-synuclein in the regulation of brain endothelial and perivascular cells: gaps and future perspectives. Front. Immunol. 12, 611761 (2021).
-
Dravid, A., Raos, B., Svirskis, D. & O’Carroll, S. J. Optimised techniques for high-throughput screening of differentiated SH-SY5Y cells and application for neurite outgrowth assays. Sci. Rep. 11, 23935 (2021).
-
Shipley, M. M., Mangold, C. A. & Szpara, M. L. Differentiation of the SH-SY5Y human neuroblastoma cell line. J. Vis. Exp. 53193. https://doi.org/10.3791/53193 (2016).
-
Nikonenko, I. et al. PSD-95 promotes synaptogenesis and multiinnervated spine formation through nitric oxide signaling. J. Cell Biol. 183, 1115–1127 (2008).
-
Wu, Q., Sun, M., Bernard, L. P. & Zhang, H. Postsynaptic density 95 (PSD-95) serine 561 phosphorylation regulates a conformational switch and bidirectional dendritic spine structural plasticity. J. Biol. Chem. 292, 16150–16160 (2017).
-
Thibaut, F., Vaugeois, J. M. & Petit, M. The dopamine transporter: characterization and physiopathologic implications]. Encephale 21, 445–451 (1995).
-
Mulvihill, K. G. Presynaptic regulation of dopamine release: Role of the DAT and VMAT2 transporters. Neurochem. Int. 122, 94–105 (2019).
-
Bergers, G. & Song, S. The role of pericytes in blood-vessel formation and maintenance. Neuro Oncol. 7, 452–464 (2005).
-
Liu, Q., Yang, Y. & Fan, X. Microvascular pericytes in brain-associated vascular disease. Biomed. Pharmacother. 121, 109633 (2020).
-
Beard, E., Lengacher, S., Dias, S., Magistretti, P. J. & Finsterwald, C. Astrocytes as key regulators of brain energy metabolism: new therapeutic perspectives. Front. Physiol. 12, 825816 (2022).
-
Verkhratsky, A. et al. Astrocytes in human central nervous system diseases: a frontier for new therapies. Sig Transduct. Target Ther. 8, 1–37 (2023).
-
Calabresi, P. et al. Alpha-synuclein in Parkinson’s disease and other synucleinopathies: from overt neurodegeneration back to early synaptic dysfunction. Cell Death Dis. 14, 1–16 (2023).
-
Negi, S., Khurana, N. & Duggal, N. The misfolding mystery: α-synuclein and the pathogenesis of Parkinson’s disease. Neurochem. Int. 177, 105760 (2024).
-
He, J., Zhu, G., Wang, G. & Zhang, F. Oxidative stress and neuroinflammation potentiate each other to promote progression of dopamine neurodegeneration. Oxid. Med. Cell. Longev. 2020, 6137521 (2020).
-
Teleanu, D. M. et al. An overview of oxidative stress, neuroinflammation, and neurodegenerative diseases. Int J. Mol. Sci. 23, 5938 (2022).
-
Chakrabarti, S. & Bisaglia, M. Oxidative stress and neuroinflammation in parkinson’s disease: the role of dopamine oxidation products. Antioxidants 12, 955 (2023).
-
Lazzari, F. D., Bubacco, L., Whitworth, A. J. & Bisaglia, M. Superoxide radical dismutation as new therapeutic strategy in Parkinson’s disease. Aging Dis. 9, 716–728 (2018).
-
De Lazzari, F., Sandrelli, F., Whitworth, A. J. & Bisaglia, M. Antioxidant therapy in Parkinson’s disease: insights from Drosophila melanogaster. Antioxidants 9, 52 (2020).
-
Chang, K.-H. & Chen, C.-M. The role of oxidative stress in Parkinson’s disease. Antioxidants 9, 597 (2020).
-
Volpicelli-Daley, L. A. et al. Exogenous α-synuclein fibrils induce lewy body pathology leading to synaptic dysfunction and neuron death. Neuron 72, 57–71 (2011).
-
Guiney, S. J. et al. Fibrillar α-synuclein toxicity depends on functional lysosomes. J. Biol. Chem. 295, 17497–17513 (2020).
-
Howe, J. W. et al. Preformed fibrils generated from mouse alpha-synuclein produce more inclusion pathology in rats than fibrils generated from rat alpha-synuclein. Parkinsonism Relat. Disord. 89, 41–47 (2021).
-
Kim, S. et al. Transneuronal Propagation of Pathologic α-Synuclein from the Gut to the Brain Models Parkinson’s Disease. Neuron 103, 627–641.e7 (2019).
-
Tanudjojo, B. et al. Phenotypic manifestation of α-synuclein strains derived from Parkinson’s disease and multiple system atrophy in human dopaminergic neurons. Nat. Commun. 12, 3817 (2021).
-
O’Leary, E. I. & Lee, J. C. Interplay between α-synuclein amyloid formation and membrane structure. Biochim. et. Biophys. Acta (BBA) – Proteins Proteom. 1867, 483–491 (2019).
-
Galvagnion, C. et al. Lipid vesicles trigger α-synuclein aggregation by stimulating primary nucleation. Nat. Chem. Biol. 11, 229–234 (2015).
-
Shahmoradian, S. H. et al. Lewy pathology in Parkinson’s disease consists of crowded organelles and lipid membranes. Nat. Neurosci. 22, 1099–1109 (2019).
-
Mahul-Mellier, A.-L. et al. The process of Lewy body formation, rather than simply α-synuclein fibrillization, is one of the major drivers of neurodegeneration. Proc. Natl. Acad. Sci. 117, 4971–4982 (2020).
-
Peelaerts, W. et al. α-Synuclein strains cause distinct synucleinopathies after local and systemic administration. Nature 522, 340–344 (2015).
-
Shrivastava, A. N. et al. Differential membrane binding and seeding of distinct α-synuclein fibrillar polymorphs. Biophys. J. 118, 1301–1320 (2020).
-
Rey, N. L. et al. α-Synuclein conformational strains spread, seed and target neuronal cells differentially after injection into the olfactory bulb. Acta Neuropathol. Commun. 7, 221 (2019).
-
Mori, A., Imai, Y. & Hattori, N. Lipids: key players that modulate?-Synuclein toxicity and neurodegeneration in Parkinson’s disease. Int. J. Mol. Sci. 21, 3301 (2020).
-
Fabelo, N. et al. Severe alterations in lipid composition of frontal cortex lipid rafts from Parkinson’s disease and incidental Parkinson’s disease. Mol. Med 17, 1107–1118 (2011).
-
Long, H., Zeng, S. & Li, D. Cellular and animal models to investigate pathogenesis of amyloid aggregation in neurodegenerative diseases. Biophys. Rep. 8, 14–28 (2022).
-
Wu, Q. et al. α-Synuclein (αSyn) preformed fibrils induce endogenous αSyn aggregation, compromise synaptic activity and enhance synapse loss in cultured excitatory hippocampal neurons. J. Neurosci. 39, 5080–5094 (2019).
-
Kim, B. J., Noh, H. R., Jeon, H. & Park, S. M. Monitoring α-synuclein aggregation Induced by Preformed α-synuclein fibrils in an in vitro model system. Exp. Neurobiol. 32, 147–156 (2023).
-
Wang, Y. et al. Phosphorylated α-synuclein in Parkinson’s disease. Sci. Transl. Med. 4, 121ra20–121ra20 (2012).
-
Chen, L. et al. Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J. Clin. Invest 119, 3257–3265 (2009).
-
Fujiwara, H. et al. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 4, 160–164 (2002).
-
Smith, W. W. et al. Synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. J. Neurosci. 25, 5544–5552 (2005).
-
Perez, R. G. et al. A role for α-synuclein in the regulation of dopamine biosynthesis. J. Neurosci. 22, 3090–3099 (2002).
-
Jin, M. et al. DOPAnization of tyrosine in α-synuclein by tyrosine hydroxylase leads to the formation of oligomers. Nat. Commun. 13, 6880 (2022).
-
Feve, A. P. Current status of tyrosine hydroxylase in management of Parkinson’s disease. CNS Neurol. Disord. Drug Targets 11, 450–455 (2012).
-
Gopinath, A. et al. DAT and TH expression marks human Parkinson’s disease in peripheral immune cells. npj Parkinsons Dis. 8, 1–14 (2022).
-
Rausch, W.-D., Wang, F. & Radad, K. From the tyrosine hydroxylase hypothesis of Parkinson’s disease to modern strategies: a short historical overview. J. Neural Transm. 129, 487–495 (2022).
-
Cacciaglia, R. et al. Soluble Aβ pathology predicts neurodegeneration and cognitive decline independently on p-tau in the earliest Alzheimer’s continuum: evidence across two independent cohorts. Alzheimers Dement. 21, e14415 (2025).
-
Dias, V., Junn, E. & Mouradian, M. M. The role of oxidative stress in Parkinson’s disease. J. Parkinson’s. Dis. 3, 461–491 (2013).
-
Cristóvão, A. C. et al. NADPH oxidase 1 mediates α-synucleinopathy in Parkinson’s disease. J. Neurosci. 32, 14465–14477 (2012).
-
Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. & Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167 (2014).
-
Teixeira-Santos, L., Albino-Teixeira, A. & Pinho, D. Neuroinflammation, oxidative stress and their interplay in neuropathic pain: focus on specialized pro-resolving mediators and NADPH oxidase inhibitors as potential therapeutic strategies. Pharmacol. Res. 162, 105280 (2020).
-
Shih, R.-H., Wang, C.-Y. & Yang, C.-M. NF-kappaB signaling pathways in neurological inflammation: a mini review. Front. Mol. Neurosci. 8, 77 (2015).
-
Singh, S. S. et al. NF-κB-mediated neuroinflammation in Parkinson’s disease and potential therapeutic effect of polyphenols. Neurotox. Res 37, 491–507 (2020).
-
Dolatshahi, M., Ranjbar Hameghavandi, M. H., Sabahi, M. & Rostamkhani, S. Nuclear factor-kappa B (NF-κB) in pathophysiology of Parkinson disease: diverse patterns and mechanisms contributing to neurodegeneration. Eur. J. Neurosci. 54, 4101–4123 (2021).
-
Tansey, M. G. & Goldberg, M. S. Neuroinflammation in Parkinson’s disease: Its role in neuronal death and implications for therapeutic intervention. Neurobiol. Dis. 37, 510–518 (2010).
-
Zhang, L. et al. BAD-mediated neuronal apoptosis and neuroinflammation contribute to Alzheimer’s disease pathology. iScience 24, 102942 (2021).
-
Hirsch, E. C. & Hunot, S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 8, 382–397 (2009).
-
Mahul-Mellier, A.-L. et al. Fibril growth and seeding capacity play key roles in α-synuclein-mediated apoptotic cell death. Cell Death Differ. 22, 2107–2122 (2015).
-
Ito, N. et al. Extracellular high molecular weight α-synuclein oligomers induce cell death by disrupting the plasma membrane. npj Parkinsons Dis. 9, 1–10 (2023).
-
Xicoy, H., Wieringa, B. & Martens, G. J. M. The SH-SY5Y cell line in Parkinson’s disease research: a systematic review. Mol. Neurodegener. 12, 10 (2017).
-
Pérez-Acuña, D., Shin, S. J., Rhee, K. H., Kim, S. J. & Lee, S.-J. -Synuclein propagation leads to synaptic abnormalities in the cortex through microglial synapse phagocytosis. Mol. Brain 16, 72 (2023).
-
D’Aloia, A. et al. A new advanced cellular model of functional cholinergic-like neurons developed by reprogramming the human SH-SY5Y neuroblastoma cell line. Cell Death Discov. 10, 24 (2024).
-
Ferreira, S. A. & Romero-Ramos, M. Microglia response during Parkinson’s disease: alpha-synuclein intervention. Front. Cell Neurosci. 12, 247 (2018).
-
Lee, H.-J., Kim, C. & Lee, S.-J. Alpha-synuclein stimulation of astrocytes. Oxid. Med Cell Longev. 3, 283–287 (2010).
-
de Rus Jacquet, A. et al. The contribution of inflammatory astrocytes to BBB impairments in a brain-chip model of Parkinson’s disease. Nat. Commun. 14, 3651 (2023).
-
Carvey, P. M., Hendey, B. & Monahan, A. J. The blood–brain barrier in neurodegenerative disease: a rhetorical perspective. J. Neurochem. 111, 291–314 (2009).
-
Westin, J. E. et al. Endothelial proliferation and increased blood–brain barrier permeability in the basal ganglia in a rat model of 3,4-dihydroxyphenyl-l-alanine-induced dyskinesia. J. Neurosci. 26, 9448–9461 (2006).
-
Carta, M. et al. Role of striatal l-DOPA in the production of dyskinesia in 6-hydroxydopamine lesioned rats. J. Neurochem. 96, 1718–1727 (2006).
-
Edwards, D. N. et al. Integrin α5β1 inhibition by ATN-161 reduces neuroinflammation and is neuroprotective in ischemic stroke. J. Cereb. Blood Flow. Metab. 40, 1695–1708 (2020).
-
Winkler, E. A. et al. Blood–spinal cord barrier disruption contributes to early motor-neuron degeneration in ALS-model mice. Proc. Natl. Acad. Sci. 111, E1035–E1042 (2014).
-
Padel, T. et al. Platelet-derived growth factor-BB has neurorestorative effects and modulates the pericyte response in a partial 6-hydroxydopamine lesion mouse model of Parkinson’s disease. Neurobiol. Dis. 94, 95–105 (2016).
-
Paek, J. et al. Microphysiological engineering of self-assembled and perfusable microvascular beds for the production of vascularized three-dimensional human microtissues. ACS Nano 13, 7627–7643 (2019).
-
Bui, T. M., Wiesolek, H. L. & Sumagin, R. ICAM-1: A master regulator of cellular responses in inflammation, injury resolution, and tumorigenesis. J. Leukoc. Biol. 108, 787–799 (2020).
-
Giannotta, M., Trani, M. & Dejana, E. VE-cadherin and endothelial adherens junctions: active guardians of vascular integrity. Dev. Cell 26, 441–454 (2013).
-
Singh Angom, R. et al. VEGF receptor-1 modulates amyloid β 1-42 oligomer-induced senescence in brain endothelial cells. FASEB J. 33, 4626–4637 (2019).
-
Terrell-Hall, T. B., Ammer, A. G., Griffith, J. I. G. & Lockman, P. R. Permeability across a novel microfluidic blood-tumor barrier model. Fluids Barriers CNS 14, 3 (2017).
-
Bang, S. et al. A low permeability microfluidic blood-brain barrier platform with direct contact between perfusable vascular network and astrocytes. Sci. Rep. 7, 8083 (2017).
-
Akiyama, H. et al. Blood-brain barrier formation of grafted human umbilical vein endothelial cells in athymic mouse brain. Brain Res. 858, 172–176 (2000).
-
Wu, C.-C. et al. Human umbilical vein endothelial cells protect against hypoxic-ischemic damage in neonatal brain via stromal cell-derived factor 1/C-X-C chemokine receptor type 4. Stroke 44, 1402–1409 (2013).
-
Hayashi, Y. et al. Induction of various blood-brain barrier properties in non-neural endothelial cells by close apposition to co-cultured astrocytes. Glia 19, 13–26 (1997).
-
Vanlandewijck, M. et al. A molecular atlas of cell types and zonation in the brain vasculature. Nature 554, 475–480 (2018).
-
Dani, N. et al. A cellular and spatial map of the choroid plexus across brain ventricles and ages. Cell 184, 3056–3074.e21 (2021).
-
Garcia, F. J. et al. Single-cell dissection of the human brain vasculature. Nature 603, 893–899 (2022).
-
Bonney, S. K., Sullivan, L. T., Cherry, T. J., Daneman, R. & Shih, A. Y. Distinct features of brain perivascular fibroblasts and mural cells revealed by in vivo two-photon imaging. J. Cereb. Blood Flow. Metab. 42, 966–978 (2022).
-
Jones, H. E. et al. Meningeal origins and dynamics of perivascular fibroblast development on the mouse cerebral vasculature. Development 150, dev201805 (2023).
-
Soderblom, C. et al. Perivascular Fibroblasts Form the Fibrotic Scar after Contusive Spinal Cord Injury. J. Neurosci. 33, 13882–13887 (2013).
-
Sosa, M. J., Shih, A. Y. & Bonney, S. K. The elusive brain perivascular fibroblast: a potential role in vascular stability and homeostasis. Front. Cardiovasc. Med. 10, 1283434 (2023).
-
Dorrier, C. E., Jones, H. E., Pintarić, L., Siegenthaler, J. A. & Daneman, R. Emerging roles for CNS fibroblasts in health, injury and disease. Nat. Rev. Neurosci. 23, 23–34 (2022).
-
McGeer, P. L., Itagaki, S., Boyes, B. E. & McGeer, E. G. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 38, 1285–1285 (1988).
-
Carvey, P. M. et al. 6-Hydroxydopamine-induced alterations in blood–brain barrier permeability. Eur. J. Neurosci. 22, 1158–1168 (2005).
-
Zhang, W. et al. Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J. 19, 533–542 (2005).
-
Dohgu, S. et al. Monomeric α-synuclein induces blood–brain barrier dysfunction through activated brain pericytes releasing inflammatory mediators in vitro. Microvasc. Res. 124, 61–66 (2019).
-
Brown, L. S. et al. Pericytes and neurovascular function in the healthy and diseased brain. Front. Cell. Neurosci. 13, 282 (2019).
-
Sweeney, M. D., Ayyadurai, S. & Zlokovic, B. V. Pericytes of the neurovascular unit: key functions and signaling pathways. Nat. Neurosci. 19, 771–783 (2016).
-
Harackiewicz, O. & Grembecka, B. The role of microglia and astrocytes in the pathomechanism of neuroinflammation in Parkinson’s disease—focus on alpha-synuclein. JIN 23, 203 (2024).
-
Sönnerqvist, C., Brus, O. & Olivecrona, M. Validation of the scandinavian guidelines for initial management of minor and moderate head trauma in children. Eur. J. Trauma Emerg. Surg. 47, 1163–1173 (2021).
-
Barcia, C. et al. Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. J. Neural Transm. 112, 1237–1248 (2005).
-
Elabi, O. F., Cunha, J. P. M. C. M., Gaceb, A., Fex, M. & Paul, G. High-fat diet-induced diabetes leads to vascular alterations, pericyte reduction, and perivascular depletion of microglia in a 6-OHDA toxin model of Parkinson disease. J. Neuroinflamm. 18, 175 (2021).
-
Carmeliet, P. Angiogenesis in health and disease. Nat. Med. 9, 653–660 (2003).
-
Chetta, A., Zanini, A., Torre, O. & Olivieri, D. Vascular remodelling and angiogenesis in asthma: morphological aspects and pharmacological modulation. Inflamm. Allergy Drug Targets 6, 41–45 (2007).
-
La Mendola, D., Trincavelli, M. L. & Martini, C. Angiogenesis in disease. Int. J. Mol. Sci. 23, 10962 (2022).
