References
-
Garrido-Cardenas, J. A., Manzano-Agugliaro, F., Acien-Fernandez, F. G. & Molina-Grima, E. Microalgae research worldwide. Algal Res. 35, 50–60. https://doi.org/10.1016/j.algal.2018.08.005 (2018).
-
Metting, F. B. Jr. Biodiversity and application of microalgae. J. Ind. Microbiol. Biotechnol. 17, 477–489. https://doi.org/10.1007/bf01574779 (1996).
-
Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. Commercial applications of microalgae. J. Biosci. Bioeng. 101, 87–96. https://doi.org/10.1263/jbb.101.87 (2006).
-
Subramanian, S. & Sayre, R. T. The right stuff; realizing the potential for enhanced biomass production in microalgae. Front. Energy Res. 10. https://doi.org/10.3389/fenrg.2022.979747 (2022).
-
Benedetti, M., Vecchi, V., Barera, S. & Dall’Osto, L. Biomass from microalgae: the potential of domestication towards sustainable biofactories. Microb. Cell. Fact. 17, 173. https://doi.org/10.1186/s12934-018-1019-3 (2018).
-
Chen, G., Zhao, L. & Qi, Y. Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: A critical review. Appl. Energy. 137, 282–291. https://doi.org/10.1016/j.apenergy.2014.10.032 (2015).
-
Prasad, R. et al. Role of microalgae in global CO2 sequestration: physiological mechanism, recent development, challenges, and future prospective. Sustainability 13, 13061. https://doi.org/10.3390/su132313061 (2021).
-
Andersen, R. (ed) Algal Culturing Techniques (Academic Press, 2005).
-
Singh, P., Gupta, S. K., Guldhe, A., Rawat, I. & Bux, F. Microalgae isolation and basic culturing techniques. In Handbook of Marine Microalgae (ed. Kim, S.-K.) 43–54. https://doi.org/10.1016/b978-0-12-800776-1.00004-2 (Elsevier, 2015).
-
Beijerinck, M. W. Culturversuche Mit Zoochlorellen, Lichenengonidien und Anderen Niederen algen. Bot. Ztg. 48, 726–740 (1890).
-
Marie, D., Le Gall, F., Edern, R., Gourvil, P. & Vaulot, D. Improvement of phytoplankton culture isolation using single cell sorting by flow cytometry. J. Phycol. 53, 271–282. https://doi.org/10.1111/jpy.12495 (2017). Epub 2017 Feb 16. PMID: 27878810.
-
Huys, G. R. & Raes, J. Go with the flow or solitary confinement: a look inside the single-cell toolbox for isolation of rare and uncultured microbes. Curr. Opin. Microbiol. 44, 1–8. https://doi.org/10.1016/j.mib.2018.05.002 (2018).
-
Scheler, O., Postek, W. & Garstecki, P. Recent developments of microfluidics as a tool for biotechnology and microbiology. Curr. Opin. Biotechnol. 55, 60–67. https://doi.org/10.1016/j.copbio.2018.08.004 (2019).
-
Mori, K. et al. Clear zone formation in microdroplets for high-throughput screening for lactic acid bacteria. Front. Microbiol. 15, 1452573. https://doi.org/10.3389/fmicb.2024.1452573 (2024).
-
Ota, Y. et al. Fluorescent nucleic acid probe in droplets for bacterial sorting (FNAP-sort) as a high-throughput screening method for environmental bacteria with various growth rates. PLoS One. 14, e0214533. https://doi.org/10.1371/journal.pone.0214533 (2019).
-
Luu, X. C. et al. A novel high-throughput approach for transforming filamentous fungi employing a droplet-based microfluidic platform. N Biotechnol. 72, 149–158. https://doi.org/10.1016/j.nbt.2022.11.003 (2022).
-
Fujitani, H., Tsuda, S., Ishii, T. & Machida, M. High-throughput screening of high protein producer budding yeast using gel microdrop technology. BioRxiv. https://doi.org/10.1101/830596 (2019).
-
Hoshino, M. et al. Water-in-oil droplet-mediated method for detecting and isolating infectious bacteriophage particles via fluorescent staining. Front. Microbiol. 14, 1282372. https://doi.org/10.3389/fmicb.2023.1282372 (2023).
-
Wulandari, D. A. et al. Design and validation of functionalized redox-responsive hydrogel beads for high-throughput screening of antibody-secreting mammalian cells. J. Biosci. Bioeng. 138, 89–95. https://doi.org/10.1016/j.jbiosc.2024.04.001 (2024).
-
Olagnon, C. et al. Ultrahigh-throughput single emulsion droplet screening for the discovery of new B antigen cleaving enzymes. ACS Catal. 14, 12884–12894. https://doi.org/10.1021/acscatal.4c02165 (2024).
-
Kim, H. S. et al. High-throughput droplet microfluidics screening platform for selecting fast-growing and high lipid-producing microalgae from a mutant library. Plant. Direct. 1, e00011. https://doi.org/10.1002/pld3.11 (2017).
-
Kim, H. S., Devarenne, T. P. & Han, A. Microfluidic systems for microalgal biotechnology: A review. Algal Res. 30, 149–161. https://doi.org/10.1016/j.algal.2017.11.020 (2018).
-
Kim, H. S., Guzman, A. R., Thapa, H. R., Devarenne, T. P. & Han, A. A droplet microfluidics platform for rapid microalgal growth and oil production analysis. Biotechnol. Bioeng. 113, 1691–1701. https://doi.org/10.1002/bit.25930 (2016).
-
Yu, Z. et al. Droplet-based microfluidic screening and sorting of microalgal populations for strain engineering applications. Algal Res. 56, 102293. https://doi.org/10.1016/j.algal.2021.102293 (2021).
-
Litchman, E., Edwards, K. F. & Klausmeier, C. A. Microbial resource utilization traits and trade-offs: implications for community structure, functioning, and biogeochemical impacts at present and in the future. Front. Microbiol. 6, 254. https://doi.org/10.3389/fmicb.2015.00254 (2015).
-
Grover, J. P. Resource competition in a variable environment: phytoplankton growing according to the variable-internal-stores model. Am. Nat. 138, 811–835. https://doi.org/10.1086/285254 (1991).
-
Liu, X., Wang, M., Nie, Y. & Wu, X. L. Successful microbial colonization of space in a more dispersed manner. ISME Commun. 1, 68. https://doi.org/10.1038/s43705-021-00063-7 (2021).
-
Inomura, K. et al. High growth rate of diatoms explained by reduced carbon requirement and low energy cost of silica deposition. Microbiol. Spectr. 11, e0331122. https://doi.org/10.1128/spectrum.03311-22 (2023).
-
Thomas, W. H., Dodson, A. N. & Reid, F. M. H. Diatom productivity compared to other algae in natural marine phytoplankton assemblages. J. Phycol. 14, 250–253. https://doi.org/10.1111/j.1529-8817.1978.tb00294.x (1978).
-
Yang, C. et al. Allelochemical induces growth and photosynthesis inhibition, oxidative damage in marine diatom phaeodactylum tricornutum. J. Exp. Mar. Bio Ecol. 444, 16–23. https://doi.org/10.1016/j.jembe.2013.03.005 (2013).
-
Zhang, Y., Wang, J. & Tan, L. Characterization of allelochemicals of the diatom Chaetoceros curvisetus and the effects on the growth of Skeletonema costatum. Sci. Total Environ. 660, 269–276. https://doi.org/10.1016/j.scitotenv.2019.01.056 (2019).
-
Windarto, E., Prasetiya, F., Mouget, J. & Gastineau, R. Allelopathy effect of the blue diatom hasleaostrearia (Gaillon) simonsen: growth Inhibition in aquaculture relevant microalgae. IJMARCC 1, 19–26. https://doi.org/10.14710/ijmarcc.1.1.p (2014).
-
Geersens, É., Vuilleumier, S. & Ryckelynck, M. Growth-associated droplet shrinkage for bacterial quantification, growth monitoring, and separation by ultrahigh-throughput microfluidics. ACS Omega. 7, 12039–12047. https://doi.org/10.1021/acsomega.2c00248 (2022).
-
Becker, W. Microalgae in human and animal nutrition In Handbook of Microalgal Culture (ed. Richmond, A.) 312–351. https://doi.org/10.1002/9780470995280.ch18 (Wiley, 2003).
-
Moon-van der Staay, S. Y., De Wachter, R. & Vaulot, D. Oceanic 18S rDNA sequences from picoplankton reveal unsuspected eukaryotic diversity. Nature 409, 607–610. https://doi.org/10.1038/35054541 (2001).
-
López-García, P., Rodríguez-Valera, F., Pedrós-Alió, C. & Moreira, D. Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607. https://doi.org/10.1038/35054537 (2001).
-
Alonso, M., Lago, F. C., Vieites, J. M. & Espiñeira, M. Molecular characterization of microalgae used in aquaculture with biotechnology potential. Aquac Int. 20, 847–857. https://doi.org/10.1007/s10499-012-9506-8 (2012).
-
Decelle, J. et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol. Ecol. Resour. 15, 1435–1445. https://doi.org/10.1111/1755-0998.12401 (2015).
-
Sébastien, S., Gustave, R., Shreyansh, J., Gabriel, A. & Charles, N. Baroud, cell culture in microfluidic droplets. Chem. Rev. 122, 7061–7096. https://doi.org/10.1021/acs.chemrev.1c00666 (2022).
-
Collins, D. J., Neild, A., deMello, A., Liu, A. Q. & Ai, Y. The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab. Chip. 15, 3439–3459. https://doi.org/10.1039/c5lc00614g (2015).
-
Shen, W., Le, S., Li, Y., Hu, F. & SeqKit A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One. 11, e0163962. https://doi.org/10.1371/journal.pone.0163962 (2016).
-
Bolyen, E. et al. Reproducible, interactive, scalable and extensible Microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857. https://doi.org/10.1038/s41587-019-0209-9 (2019).
