References
-
Hajibarat, Z., Saidi, A., Ghazvini, H. & Hajibarat, Z. Investigation of morpho-physiolgical traits and gene expression in barley under nitrogen deficiency. Sci. Rep. 14, 8875 (2024).
-
Tiwari, J. K. et al. Genome-wide identification and characterization of microRNAs by small RNA sequencing for low nitrogen stress in potato. PLoS ONE 15, e0233076 (2020).
-
Naz, S. et al. Genotypic difference in the responses to nitrogen fertilizer form in tibetan wild and cultivated barley. Plants. 10, 595 (2021).
-
Paponov, M., Arakelyan, A., Dobrev, P. I., Verheul, M. J. & Paponov, I. A. Nitrogen deficiency and synergism between continuous light and root ammonium supply modulate distinct but overlapping patterns of phytohormone composition in xylem sap of tomato plants. Plants. 10, 573 (2021).
-
Bosemark, N. O. The influence of nitrogen on root development. Physiol. Plant. 7, (1954)
-
Lynch, J. P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112, 347–357 (2013).
-
Hu, S. et al. A novel insight into nitrogen and auxin signaling in lateral root formation in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC. Plant Bio. 20, 1–17 (2020).
-
Dumanović, J., Nepovimova, E., Natić, M., Kuča, K. & Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 11, 552969 (2021).
-
Yañez-Mansilla, E. et al. Leaf nitrogen thresholds ensuring high antioxidant features of Vaccinium corymbosum cultivars. J Soil Sci. Plant Nutr. 15, 574–586 (2015).
-
Reyes, J. L. & Chua, N. H. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant. J 49, 592–606 (2007).
-
Sunkar, R. MicroRNAs with macro-effects on plant stress responses. Semin. Dev. Biol. 8, 805–811 (2010).
-
Qiu, L. MicroSugar: A database of comprehensive miRNA target prediction framework for sugarcane (Saccharum officinarum L). Genomics 114, 110420 (2022).
-
Lin, S. I. et al. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol. 51, 2119–2131 (2010).
-
Wang, X., Li, X., Zhang, S., Korpelainen, H. & Li, C. Physiological and transcriptional responses of two contrasting Populus clones to nitrogen stress. Tree Physiol 36, 628–642 (2016).
-
Zhao, M. et al. Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS ONE 7, e29669 (2012).
-
Achkar, N. P., Cambiagno, D. A. & Manavella, P. A. miRNA biogenesis: A dynamic pathway. Trends Plant Sci 21, 1034–1044 (2016).
-
Song, A. et al. Identification of nitrogen starvation-responsive microRNAs in Chrysanth. Nankingense. Plant Physiol. Biochem. 91, 41–48 (2015).
-
Vidal, E. A. et al. Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots. BMC. Genom. 14, 701 (2013).
-
Shin, S. Y. et al. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genom. 19, 532 (2018).
-
Santos, T. B. D. et al. An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: Insights on nitrogen starvation responses. Funct. Integr. Genomic. 19, 151–169 (2019).
-
Sand, M. et al. MicroRNAs and the skin: tiny players in the body’s largest organ. J. Dermatol. Sci. 53, 169–175 (2009).
-
Millar, A. A. The function of miRNAs in plants. Plants. 9, 198 (2020).
-
Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).
-
Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53 (2006).
-
Pant, B. D. et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant. Physiol. 150, 1541–1555 (2009).
-
Yang, Y., Liang, Y., Wang, C. & Wang, Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. Stress. Biol. 4, 38 (2024).
-
Nguyen, G. N., Rothstein, S. J., Spangenberg, G. & Kant, S. Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. Front. Plant. Sci. 6, 629 (2015).
-
Zhao, M., Ding, H., Zhu, J. K., Zhang, F. & Li, W. X. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New. Phytol. 190, 906–915 (2011).
-
Wang, Y. et al. MicroRNA167-directed regulation of the auxin response factors GmARF8a and GmARF8b is required for soybean nodulation and lateral root development. Plant Physiol. 168, 984–999 (2015).
-
Gifford, M. L., Dean, A., Gutierrez, R. A., Coruzzi, G. M. & Birnbaum, K. D. Cell-specific nitrogen responses mediate developmental plasticity. Proc. Natl. Acad. Sci. U.S.A. 105, 803–808 (2008).
-
Yu, C. Overexpression of miR169o, an overlapping MicroRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efciency and susceptibility to bacterial blight in rice. Plant. Cell. Physiol. 59, 1234–1247 (2018).
-
Trevisan, S. et al. Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. Plant. Cell. Environ. 35, 1137–1155 (2012).
-
Chen, Z. et al. Expression analysis of nitrogen metabolism-related genes reveals differences in adaptation to low-nitrogen stress between two different barley cultivars at seedling stage. Int. J. Genomics. 1, 10 (2018).
-
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
-
Ekinci, M. et al. Determination of physiological indices and some antioxidant enzymes of chard exposed to nitric oxide under drought stress. Russ. J. Plant Physiol. 67, 740–749 (2020).
-
Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22, 867–880 (1981).
-
Chance, B. & Maehly, A. C. Assay of catalases and peroxidases. Methods. Enzymol. 2, 764–775 (1955).
-
Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: Biological systems database as a model of the real world. Nucleic. Acids. Res. 53, D672–D677 (2025).
-
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein. Sci. 28, 1947–1951 (2019).
-
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic. Acids. Res. 28, 27–30 (2000).
-
Xie, F., Wang, J. & Zhang, B. RefFinder: A web-based tool for comprehensively analyzing and identifying reference genes. Funct. Integr. Genomics. 23, 125 (2023).
-
Hou, L., Zhu, H., Xian, W. & Ma, Y. Selection and validation of stable reference genes in potato infected by Pectobacterium atrosepticum using real-time quantitative PCR. Sci. Rep. 15, 14205 (2025).
-
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).
-
Farooq, M. A. Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environ. Poll. 292, 118473 (2022).
-
Zandalinas, S. I., Balfagón, D., Gómez-Cadenas, A. & Mittler, R. Plant responses to climate change: Metabolic changes under combined abiotic stresses. J. Exp. Bot. 73, 3339–3354 (2022).
-
Ye, J. Y., Tian, W. H. & Jin, C. W. Nitrogen in plants: From nutrition to the modulation of abiotic stress adaptation. Stress Biol. 2, 4 (2022).
-
Kant, S., Bi, Y. M. & Rothstein, S. J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J. Exp. Bot. 62, 1499–1509 (2011).
-
Raza, A. et al. miRNAs for crop improvement. Plant. Physiol. Biochem. 201, 107857 (2023).
-
Tiwari, J. K., Plett, D., Garnett, T., Chakrabarti, S. K. & Singh, R. K. Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: Translating knowledge from other crops. Funct. Plant. Biol. 45, 587–605 (2018).
-
Taleski, M., Imin, N. & Djordjevic, M. A. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. J. Exp. Bot. 69, 1829–1836 (2018).
-
Yang, J. T., Schneider, H. M., Brown, K. M. & Lynch, J. P. Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific. J. Exp. Bot. 70, 5311–5325 (2019).
-
Liu, K. H., Diener, A., Lin, Z., Liu, C. & Sheen, J. Primary nitrate responses mediated by calcium signalling and diverse protein phosphorylation. J. Exp. Bot. 71, 4428–4441 (2020).
-
Jia, Z. & von Wirén, N. Signaling pathways underlying nitrogen-dependent changes in root system architecture: From model to crop species. J. Exp. Bot. 71, 4393–4404 (2020).
-
Li, L., Dai, H., Sun, R., Zhang, Z. & Zhang, B. Micrornas as biotechnological targets for future food security and agricultural sustainability. J. Agric. Food. Chem. 73, 23118–23146 (2025).
-
Meng, Y., Shao, C., Wang, H. & Chen, M. The regulatory activities of plant microRNAs: A more dynamic perspective. Plant. Physiol. 157, 1583–1595 (2011).
-
Balyan, S. Delineating the tissue-mediated drought stress governed tuning of conserved miR408 and its targets in rice. Funct. Integr. Genomics. 23, 187 (2023).
-
Yan, Z. et al. miR172 regulates soybean nodulation. Mol. Plant. Microbe. Interact. 26, 1371–1377 (2013).
-
Gutierrez, L. et al. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and MicroRNA abundance. Plant Cell 21, 3119–3132 (2009).
-
Nischal, L. et al. Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes. PLoS ONE 7, e50261 (2012).
-
Liang, G., He, H. & Yu, D. Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS ONE 7, e48951 (2012).
-
Paul, S., Datta, S. K. & Datta, K. miRNA regulation of nutrient homeostasis in plants. Front. Plant. Sci. 6, 232 (2015).
-
Xu, Z. et al. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS ONE 6, e28009 (2011).
-
Zuluaga, D. L., De Paola, D., Janni, M., Curci, P. L. & Sonnante, G. Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage. PLoS ONE 12, e0183253 (2017).
-
Guo, H. S., Xie, Q., Fei, J. F. & Chua, N. H. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17, 1376–1386 (2005).
-
Das, S. & Sathee, L. miRNA mediated regulation of nitrogen response and nitrogen use efficiency of plants: The case of wheat. Physiol. Mol. Biol. Plants. 29, 1371–1394 (2023).
-
Kunwar, U. B., Manzoor, N., Wen, J. & Pandit, N. R. Integrating agronomic and molecular advancements to enhance nitrogen use efficiency (NUE) and promote sustainable rice production. Nitrogen. 6, 34 (2025).
-
Xue, H. et al. Differential responses of wheat (Triticum aestivum L.) and cotton (Gossypium hirsutum L.) to nitrogen deficiency in the root morpho-physiological characteristics and potential microRNA-mediated mechanisms. Front. Plant. Sci. 13, 928229 (2022).
-
Lu, Y. et al. Screening of differentially expressed microRNAs and target genes in two potato varieties under nitrogen stress. BMC. Plant Biol. 22, 478 (2022).
-
Piya, S. et al. Hypermethylation of miRNA genes during nodule development. Front. Mol. Biosci. 8, 616623 (2021).
-
Liu, H., Able, A. J. & Able, J. A. Nitrogen starvation-responsive micro-RNAs are affected by transgenerational stress in durum wheat seedlings. Plants. 10, 826 (2021).
-
Zuluaga, D. L. & Sonnante, G. The use of nitrogen and its regulation in cereals: Structural genes, transcription factors, and the role of miRNAs. Plants. 8, 294 (2019).
-
Sorin, C. A miR 169 isoform regulates specific NF-YA targets and root architecture in a rabidopsis. New Phytol. 202, 1197–1211 (2014).
-
Seo, J. et al. The rice NUCLEAR FACTOR0YA5 and MICRORNA169a module promotes nitrogen utilization during nitrogen deficiency. Plant Physiol. 194, 491–510 (2019).
-
Xie, Q. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419, 167–170 (2002).
-
Zhou, J. & Wu, J. T. Nitrate/ammonium-responsive microRNA-mRNA regulatory networks affect root system architecture in Populus× canescens. BMC. Plant. Biol. 22, 96 (2022).
-
Cerezo, M. et al. Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant. Physiol. 127, 262–271 (2001).
-
Li, Y. et al. Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine. Genome. Res. 16, 414–427 (2006).
-
Okamoto, M., Vidmar, J. J. & Glass, A. D. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: Responses to nitrate provision. Plant. Cell. Physiol. 44, 304–317 (2003).
-
Lejay, L. Molecular and functional regulation of two NO3– uptake systems by N-and C-status of Arabidopsis plants. Plant. J. 18, 509–519 (1999).
-
Zhao, H. Carbohydrate metabolism and transport in apple roots under nitrogen deficiency. Plant Physiol. Biochem. 155, 455–463 (2020).
-
Gutierrez, L. et al. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24, 2515–2527 (2012).
-
Park, B. S. et al. Arabidopsis NITROGEN LIMITATION ADAPTATION regulates ORE1 homeostasis during senescence induced by nitrogen deficiency. Nature. Plants. 4, 898–903 (2018).
-
Wang, C. et al. miRNA-seq analysis revealed a potential strategy underlying poplar root responses to low nitrogen stress. Planta 261, 1–17 (2025).
-
Zhou, M. et al. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front. Biol. 5, 67–90 (2010).
-
Gao, Y. et al. The evolution and functional roles of miR408 and its targets in plants. Int. J. Mol. Sci. 23, 530 (2022).
-
Mutum, R. D. et al. Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS. J. 280, 1717–1730 (2013).
-
Hajibarat, Z. et al. Integrated proteome and metabolome analysis of the penultimate internodes revealing remobilization efficiency in contrasting barley genotypes under water stress. Sci. Rep. 14, 28312 (2024).
-
Hajibarat, Z. & Saidi, A. Filamentation temperature-sensitive (FtsH); Key player in response to multiple environmental stress conditions and developmental stages in potato. J. Plant. Growth. Regul. 42, 4223–4239 (2023).
