MicroRNA and target gene dynamics in potato under nitrogen deficiency

microrna-and-target-gene-dynamics-in-potato-under-nitrogen-deficiency
MicroRNA and target gene dynamics in potato under nitrogen deficiency

References

  1. Hajibarat, Z., Saidi, A., Ghazvini, H. & Hajibarat, Z. Investigation of morpho-physiolgical traits and gene expression in barley under nitrogen deficiency. Sci. Rep. 14, 8875 (2024).

    Google Scholar 

  2. Tiwari, J. K. et al. Genome-wide identification and characterization of microRNAs by small RNA sequencing for low nitrogen stress in potato. PLoS ONE 15, e0233076 (2020).

    Google Scholar 

  3. Naz, S. et al. Genotypic difference in the responses to nitrogen fertilizer form in tibetan wild and cultivated barley. Plants. 10, 595 (2021).

    Google Scholar 

  4. Paponov, M., Arakelyan, A., Dobrev, P. I., Verheul, M. J. & Paponov, I. A. Nitrogen deficiency and synergism between continuous light and root ammonium supply modulate distinct but overlapping patterns of phytohormone composition in xylem sap of tomato plants. Plants. 10, 573 (2021).

    Google Scholar 

  5. Bosemark, N. O. The influence of nitrogen on root development. Physiol. Plant. 7, (1954)

  6. Lynch, J. P. Steep, cheap and deep: An ideotype to optimize water and N acquisition by maize root systems. Ann. Bot. 112, 347–357 (2013).

    Google Scholar 

  7. Hu, S. et al. A novel insight into nitrogen and auxin signaling in lateral root formation in tea plant [Camellia sinensis (L.) O. Kuntze]. BMC. Plant Bio. 20, 1–17 (2020).

    Google Scholar 

  8. Dumanović, J., Nepovimova, E., Natić, M., Kuča, K. & Jaćević, V. The significance of reactive oxygen species and antioxidant defense system in plants: A concise overview. Front. Plant Sci. 11, 552969 (2021).

    Google Scholar 

  9. Yañez-Mansilla, E. et al. Leaf nitrogen thresholds ensuring high antioxidant features of Vaccinium corymbosum cultivars. J Soil Sci. Plant Nutr. 15, 574–586 (2015).

    Google Scholar 

  10. Reyes, J. L. & Chua, N. H. ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant. J 49, 592–606 (2007).

    Google Scholar 

  11. Sunkar, R. MicroRNAs with macro-effects on plant stress responses. Semin. Dev. Biol. 8, 805–811 (2010).

    Google Scholar 

  12. Qiu, L. MicroSugar: A database of comprehensive miRNA target prediction framework for sugarcane (Saccharum officinarum L). Genomics 114, 110420 (2022).

    Google Scholar 

  13. Lin, S. I. et al. Complex regulation of two target genes encoding SPX-MFS proteins by rice miR827 in response to phosphate starvation. Plant Cell Physiol. 51, 2119–2131 (2010).

    Google Scholar 

  14. Wang, X., Li, X., Zhang, S., Korpelainen, H. & Li, C. Physiological and transcriptional responses of two contrasting Populus clones to nitrogen stress. Tree Physiol 36, 628–642 (2016).

    Google Scholar 

  15. Zhao, M. et al. Cloning and characterization of maize miRNAs involved in responses to nitrogen deficiency. PLoS ONE 7, e29669 (2012).

    Google Scholar 

  16. Achkar, N. P., Cambiagno, D. A. & Manavella, P. A. miRNA biogenesis: A dynamic pathway. Trends Plant Sci 21, 1034–1044 (2016).

    Google Scholar 

  17. Song, A. et al. Identification of nitrogen starvation-responsive microRNAs in Chrysanth. Nankingense. Plant Physiol. Biochem. 91, 41–48 (2015).

    Google Scholar 

  18. Vidal, E. A. et al. Integrated RNA-seq and sRNA-seq analysis identifies novel nitrate-responsive genes in Arabidopsis thaliana roots. BMC. Genom. 14, 701 (2013).

    Google Scholar 

  19. Shin, S. Y. et al. Transcriptomic analyses of rice (Oryza sativa) genes and non-coding RNAs under nitrogen starvation using multiple omics technologies. BMC Genom. 19, 532 (2018).

    Google Scholar 

  20. Santos, T. B. D. et al. An integrated analysis of mRNA and sRNA transcriptional profiles in Coffea arabica L. roots: Insights on nitrogen starvation responses. Funct. Integr. Genomic. 19, 151–169 (2019).

    Google Scholar 

  21. Sand, M. et al. MicroRNAs and the skin: tiny players in the body’s largest organ. J. Dermatol. Sci. 53, 169–175 (2009).

    Google Scholar 

  22. Millar, A. A. The function of miRNAs in plants. Plants. 9, 198 (2020).

    Google Scholar 

  23. Bartel, D. P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004).

    Google Scholar 

  24. Jones-Rhoades, M. W., Bartel, D. P. & Bartel, B. MicroRNAs and their regulatory roles in plants. Annu. Rev. Plant Biol. 57, 19–53 (2006).

    Google Scholar 

  25. Pant, B. D. et al. Identification of nutrient-responsive Arabidopsis and rapeseed microRNAs by comprehensive real-time polymerase chain reaction profiling and small RNA sequencing. Plant. Physiol. 150, 1541–1555 (2009).

    Google Scholar 

  26. Yang, Y., Liang, Y., Wang, C. & Wang, Y. MicroRNAs as potent regulators in nitrogen and phosphorus signaling transduction and their applications. Stress. Biol. 4, 38 (2024).

    Google Scholar 

  27. Nguyen, G. N., Rothstein, S. J., Spangenberg, G. & Kant, S. Role of microRNAs involved in plant response to nitrogen and phosphorous limiting conditions. Front. Plant. Sci. 6, 629 (2015).

    Google Scholar 

  28. Zhao, M., Ding, H., Zhu, J. K., Zhang, F. & Li, W. X. Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New. Phytol. 190, 906–915 (2011).

    Google Scholar 

  29. Wang, Y. et al. MicroRNA167-directed regulation of the auxin response factors GmARF8a and GmARF8b is required for soybean nodulation and lateral root development. Plant Physiol. 168, 984–999 (2015).

    Google Scholar 

  30. Gifford, M. L., Dean, A., Gutierrez, R. A., Coruzzi, G. M. & Birnbaum, K. D. Cell-specific nitrogen responses mediate developmental plasticity. Proc. Natl. Acad. Sci. U.S.A. 105, 803–808 (2008).

    Google Scholar 

  31. Yu, C. Overexpression of miR169o, an overlapping MicroRNA in response to both nitrogen limitation and bacterial infection, promotes nitrogen use efciency and susceptibility to bacterial blight in rice. Plant. Cell. Physiol. 59, 1234–1247 (2018).

    Google Scholar 

  32. Trevisan, S. et al. Expression and tissue-specific localization of nitrate-responsive miRNAs in roots of maize seedlings. Plant. Cell. Environ. 35, 1137–1155 (2012).

    Google Scholar 

  33. Chen, Z. et al. Expression analysis of nitrogen metabolism-related genes reveals differences in adaptation to low-nitrogen stress between two different barley cultivars at seedling stage. Int. J. Genomics. 1, 10 (2018).

    Google Scholar 

  34. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Google Scholar 

  35. Ekinci, M. et al. Determination of physiological indices and some antioxidant enzymes of chard exposed to nitric oxide under drought stress. Russ. J. Plant Physiol. 67, 740–749 (2020).

    Google Scholar 

  36. Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant. Cell. Physiol. 22, 867–880 (1981).

    Google Scholar 

  37. Chance, B. & Maehly, A. C. Assay of catalases and peroxidases. Methods. Enzymol. 2, 764–775 (1955).

    Google Scholar 

  38. Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: Biological systems database as a model of the real world. Nucleic. Acids. Res. 53, D672–D677 (2025).

    Google Scholar 

  39. Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein. Sci. 28, 1947–1951 (2019).

    Google Scholar 

  40. Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic. Acids. Res. 28, 27–30 (2000).

    Google Scholar 

  41. Xie, F., Wang, J. & Zhang, B. RefFinder: A web-based tool for comprehensively analyzing and identifying reference genes. Funct. Integr. Genomics. 23, 125 (2023).

    Google Scholar 

  42. Hou, L., Zhu, H., Xian, W. & Ma, Y. Selection and validation of stable reference genes in potato infected by Pectobacterium atrosepticum using real-time quantitative PCR. Sci. Rep. 15, 14205 (2025).

    Google Scholar 

  43. Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).

    Google Scholar 

  44. Farooq, M. A. Mitigation effects of exogenous melatonin-selenium nanoparticles on arsenic-induced stress in Brassica napus. Environ. Poll. 292, 118473 (2022).

    Google Scholar 

  45. Zandalinas, S. I., Balfagón, D., Gómez-Cadenas, A. & Mittler, R. Plant responses to climate change: Metabolic changes under combined abiotic stresses. J. Exp. Bot. 73, 3339–3354 (2022).

    Google Scholar 

  46. Ye, J. Y., Tian, W. H. & Jin, C. W. Nitrogen in plants: From nutrition to the modulation of abiotic stress adaptation. Stress Biol. 2, 4 (2022).

    Google Scholar 

  47. Kant, S., Bi, Y. M. & Rothstein, S. J. Understanding plant response to nitrogen limitation for the improvement of crop nitrogen use efficiency. J. Exp. Bot. 62, 1499–1509 (2011).

    Google Scholar 

  48. Raza, A. et al. miRNAs for crop improvement. Plant. Physiol. Biochem. 201, 107857 (2023).

    Google Scholar 

  49. Tiwari, J. K., Plett, D., Garnett, T., Chakrabarti, S. K. & Singh, R. K. Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: Translating knowledge from other crops. Funct. Plant. Biol. 45, 587–605 (2018).

    Google Scholar 

  50. Taleski, M., Imin, N. & Djordjevic, M. A. CEP peptide hormones: key players in orchestrating nitrogen-demand signalling, root nodulation, and lateral root development. J. Exp. Bot. 69, 1829–1836 (2018).

    Google Scholar 

  51. Yang, J. T., Schneider, H. M., Brown, K. M. & Lynch, J. P. Genotypic variation and nitrogen stress effects on root anatomy in maize are node specific. J. Exp. Bot. 70, 5311–5325 (2019).

    Google Scholar 

  52. Liu, K. H., Diener, A., Lin, Z., Liu, C. & Sheen, J. Primary nitrate responses mediated by calcium signalling and diverse protein phosphorylation. J. Exp. Bot. 71, 4428–4441 (2020).

    Google Scholar 

  53. Jia, Z. & von Wirén, N. Signaling pathways underlying nitrogen-dependent changes in root system architecture: From model to crop species. J. Exp. Bot. 71, 4393–4404 (2020).

    Google Scholar 

  54. Li, L., Dai, H., Sun, R., Zhang, Z. & Zhang, B. Micrornas as biotechnological targets for future food security and agricultural sustainability. J. Agric. Food. Chem. 73, 23118–23146 (2025).

    Google Scholar 

  55. Meng, Y., Shao, C., Wang, H. & Chen, M. The regulatory activities of plant microRNAs: A more dynamic perspective. Plant. Physiol. 157, 1583–1595 (2011).

    Google Scholar 

  56. Balyan, S. Delineating the tissue-mediated drought stress governed tuning of conserved miR408 and its targets in rice. Funct. Integr. Genomics. 23, 187 (2023).

    Google Scholar 

  57. Yan, Z. et al. miR172 regulates soybean nodulation. Mol. Plant. Microbe. Interact. 26, 1371–1377 (2013).

    Google Scholar 

  58. Gutierrez, L. et al. Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of auxin response factor transcripts and MicroRNA abundance. Plant Cell 21, 3119–3132 (2009).

    Google Scholar 

  59. Nischal, L. et al. Identification and comparative analysis of microRNAs associated with low-N tolerance in rice genotypes. PLoS ONE 7, e50261 (2012).

    Google Scholar 

  60. Liang, G., He, H. & Yu, D. Identification of nitrogen starvation-responsive microRNAs in Arabidopsis thaliana. PLoS ONE 7, e48951 (2012).

    Google Scholar 

  61. Paul, S., Datta, S. K. & Datta, K. miRNA regulation of nutrient homeostasis in plants. Front. Plant. Sci. 6, 232 (2015).

    Google Scholar 

  62. Xu, Z. et al. Genome-wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS ONE 6, e28009 (2011).

    Google Scholar 

  63. Zuluaga, D. L., De Paola, D., Janni, M., Curci, P. L. & Sonnante, G. Durum wheat miRNAs in response to nitrogen starvation at the grain filling stage. PLoS ONE 12, e0183253 (2017).

    Google Scholar 

  64. Guo, H. S., Xie, Q., Fei, J. F. & Chua, N. H. MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17, 1376–1386 (2005).

    Google Scholar 

  65. Das, S. & Sathee, L. miRNA mediated regulation of nitrogen response and nitrogen use efficiency of plants: The case of wheat. Physiol. Mol. Biol. Plants. 29, 1371–1394 (2023).

    Google Scholar 

  66. Kunwar, U. B., Manzoor, N., Wen, J. & Pandit, N. R. Integrating agronomic and molecular advancements to enhance nitrogen use efficiency (NUE) and promote sustainable rice production. Nitrogen. 6, 34 (2025).

    Google Scholar 

  67. Xue, H. et al. Differential responses of wheat (Triticum aestivum L.) and cotton (Gossypium hirsutum L.) to nitrogen deficiency in the root morpho-physiological characteristics and potential microRNA-mediated mechanisms. Front. Plant. Sci. 13, 928229 (2022).

    Google Scholar 

  68. Lu, Y. et al. Screening of differentially expressed microRNAs and target genes in two potato varieties under nitrogen stress. BMC. Plant Biol. 22, 478 (2022).

    Google Scholar 

  69. Piya, S. et al. Hypermethylation of miRNA genes during nodule development. Front. Mol. Biosci. 8, 616623 (2021).

    Google Scholar 

  70. Liu, H., Able, A. J. & Able, J. A. Nitrogen starvation-responsive micro-RNAs are affected by transgenerational stress in durum wheat seedlings. Plants. 10, 826 (2021).

    Google Scholar 

  71. Zuluaga, D. L. & Sonnante, G. The use of nitrogen and its regulation in cereals: Structural genes, transcription factors, and the role of miRNAs. Plants. 8, 294 (2019).

    Google Scholar 

  72. Sorin, C. A miR 169 isoform regulates specific NF-YA targets and root architecture in a rabidopsis. New Phytol. 202, 1197–1211 (2014).

    Google Scholar 

  73. Seo, J. et al. The rice NUCLEAR FACTOR0YA5 and MICRORNA169a module promotes nitrogen utilization during nitrogen deficiency. Plant Physiol. 194, 491–510 (2019).

    Google Scholar 

  74. Xie, Q. SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419, 167–170 (2002).

    Google Scholar 

  75. Zhou, J. & Wu, J. T. Nitrate/ammonium-responsive microRNA-mRNA regulatory networks affect root system architecture in Populus× canescens. BMC. Plant. Biol. 22, 96 (2022).

    Google Scholar 

  76. Cerezo, M. et al. Major alterations of the regulation of root NO3- uptake are associated with the mutation of Nrt2.1 and Nrt2.2 genes in Arabidopsis. Plant. Physiol. 127, 262–271 (2001).

    Google Scholar 

  77. Li, Y. et al. Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a relevance vector machine. Genome. Res. 16, 414–427 (2006).

    Google Scholar 

  78. Okamoto, M., Vidmar, J. J. & Glass, A. D. Regulation of NRT1 and NRT2 gene families of Arabidopsis thaliana: Responses to nitrate provision. Plant. Cell. Physiol. 44, 304–317 (2003).

    Google Scholar 

  79. Lejay, L. Molecular and functional regulation of two NO3 uptake systems by N-and C-status of Arabidopsis plants. Plant. J. 18, 509–519 (1999).

    Google Scholar 

  80. Zhao, H. Carbohydrate metabolism and transport in apple roots under nitrogen deficiency. Plant Physiol. Biochem. 155, 455–463 (2020).

    Google Scholar 

  81. Gutierrez, L. et al. Auxin controls Arabidopsis adventitious root initiation by regulating jasmonic acid homeostasis. Plant Cell 24, 2515–2527 (2012).

    Google Scholar 

  82. Park, B. S. et al. Arabidopsis NITROGEN LIMITATION ADAPTATION regulates ORE1 homeostasis during senescence induced by nitrogen deficiency. Nature. Plants. 4, 898–903 (2018).

    Google Scholar 

  83. Wang, C. et al. miRNA-seq analysis revealed a potential strategy underlying poplar root responses to low nitrogen stress. Planta 261, 1–17 (2025).

    Google Scholar 

  84. Zhou, M. et al. Degradome sequencing reveals endogenous small RNA targets in rice (Oryza sativa L. ssp. indica). Front. Biol. 5, 67–90 (2010).

    Google Scholar 

  85. Gao, Y. et al. The evolution and functional roles of miR408 and its targets in plants. Int. J. Mol. Sci. 23, 530 (2022).

    Google Scholar 

  86. Mutum, R. D. et al. Evolution of variety-specific regulatory schema for expression of osa-miR408 in indica rice varieties under drought stress. FEBS. J. 280, 1717–1730 (2013).

    Google Scholar 

  87. Hajibarat, Z. et al. Integrated proteome and metabolome analysis of the penultimate internodes revealing remobilization efficiency in contrasting barley genotypes under water stress. Sci. Rep. 14, 28312 (2024).

    Google Scholar 

  88. Hajibarat, Z. & Saidi, A. Filamentation temperature-sensitive (FtsH); Key player in response to multiple environmental stress conditions and developmental stages in potato. J. Plant. Growth. Regul. 42, 4223–4239 (2023).

    Google Scholar 

Download references