References
-
Tang, S. & Zheng, J. Antibacterial activity of silver nanoparticles: structural effects. Adv. Healthcare Mater. 7, 1701503 (2018).
-
Le Ouay, B. & Stellacci, F. Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today 10, 339–354 (2015).
-
Luceri, A., Francese, R., Lembo, D., Ferraris, M. & Balagna, C. Silver Nanoparticles: review of antiviral properties, mechanism of action and applications. Microorganisms 11, 629 (2023).
-
Crisan, C. M. et al. Review on silver nanoparticles as a novel class of antibacterial solutions. Appl. Sci. 11, 1120 (2021).
-
Magdy, G., Aboelkassim, E., Abd Elhaleem, S. M. & Belal, F. A comprehensive review on silver nanoparticles: Synthesis approaches, characterization techniques, and recent pharmaceutical, environmental, and antimicrobial applications. Microchem. J. 196, 109615 (2024).
-
Ramos, G. L. P. A. et al. Impact of silver nanoparticles active packaging on the behavior of Listeria monocytogenes and other microbial groups during ripening and storage of Canastra cheeses. Food Control 166, 110742 (2024).
-
Zapata, P. A. et al. Nanocomposites based on polyethylene and nanosilver particles produced by metallocenic “in situ” polymerization: synthesis, characterization, and antimicrobial behavior. Eur. Polym. J. 47, 1541–1549 (2011).
-
Jaffar, S. S. et al. Development and characterization of carrageenan/nanocellulose/silver nanoparticles bionanocomposite film from Kappaphycus alvarezii seaweed for food packaging. Int. J. Biol. Macromol. 311, 143922 (2025).
-
Shankar, S., Khodaei, D. & Lacroix, M. Effect of chitosan/essential oils/silver nanoparticles composite films packaging and gamma irradiation on shelf life of strawberries. Food Hydrocoll 117, 106750 (2021).
-
Pandian, H., Senthilkumar, Ratnam M, V., M, N. & S, S. Azadirachta indica leaf extract mediated silver nanoparticles impregnated nano composite film (AgNP/MCC/starch/whey protein) for food packaging applications. Environ. Res. 216, 114641 (2023).
-
Mouzahim, M. E. et al. Effect of Kaolin clay and Ficus carica mediated silver nanoparticles on chitosan food packaging film for fresh apple slice preservation. Food Chem. 410, 135470 (2023).
-
Mathew, S., S, S., Mathew, J. & E.K, R. Biodegradable and active nanocomposite pouches reinforced with silver nanoparticles for improved packaging of chicken sausages. Food Packag. Shelf Life 19, 155–166 (2019).
-
Hong, S.-I., Cho, Y. & Rhim, J.-W. Effect of agar/AgNP composite film packaging on refrigerated beef loin quality. Membranes 11, 750 (2021).
-
He, Y., Chen, S., Xu, D., Ren, D. & Wu, X. Fabrication of antimicrobial colorimetric pad for meat packaging based on polyvinyl alcohol aerogel with the incorporation of anthocyanins and silver nanoparticles. Packag. Technol. Sci. 36, 745–755 (2023).
-
Mortazavi Moghadam, F. S., Rasouli, S. & Mortazavi Moghadam, F. A. In vivo study and cytotoxicity of migrated silver nanoparticles (AgNPs) from cellulose/LDPE/AgNP nanocomposite in highly perishable food (Fish Fillet) packaging. ACS Food Sci. Technol. 5, 1024–1041 (2025).
-
Incoronato, A. L., Conte, A., Buonocore, G. G. & Del Nobile, M. A. Agar hydrogel with silver nanoparticles to prolong the shelf life of Fior di Latte cheese. J. Dairy Sci. 94, 1697–1704 (2011).
-
Ortega, F., Minnaard, J., Arce, V. B. & García, M. A. Nanocomposite starch films: cytotoxicity studies and their application as cheese packaging. Food Biosci 53, 102562 (2023).
-
Bayani Bandpey, N., Aroujalian, A., Raisi, A. & Fazel, S. Surface coating of silver nanoparticles on polyethylene for fabrication of antimicrobial milk packaging films. Int. J. Dairy Technol. 70, 204–211 (2017).
-
Hannon, J. C. et al. Migration assessment of silver from nanosilver spray coated low density polyethylene or polyester films into milk. Food Packag. Shelf Life 15, 144–150 (2018).
-
Choi, J. I. et al. Potential silver nanoparticles migration from commercially available polymeric baby products into food simulants. Food Addit. Contam. A 35, 996–1005 (2018).
-
Deng, J. et al. Preparation of nano-silver-containing polyethylene composite film and Ag Ion migration into food-simulants. J. Nanosci. Nanotechnol. 20, 1613–1621 (2020).
-
Kim, M. H. et al. Kinetic and thermodynamic studies of silver migration from nanocomposites. J. Food Eng. 243, 1–8 (2019).
-
Morais, L.dO., Valverde, M. E., Mauro, G. J. & Delgado, I. F. Critical evaluation of migration studies of silver nanoparticles present in food packaging: a systematic review. Crit. Rev. Food Sci. Nutr. 60, 3083–3102 (2020).
-
Polat, S., Fenercioğlu, H. & Güçlü, M. Effects of metal nanoparticles on the physical and migration properties of low density polyethylene films. J. Food Eng. 229, 32–42 (2018).
-
Ahari, H. & Lahijani, L. K. Migration of silver and copper nanoparticles from food coating. Coatings 11, 380 (2021).
-
V. Pillai, K. et al. Environmental release of core–shell semiconductor nanocrystals from free-standing polymer nanocomposite films. Environ. Sci. Nano 3, 657–669 (2016).
-
Weiner, R. G., Sharma, A., Xu, H., Gray, P. J. & Duncan, T. V. Assessment of mass transfer from poly(ethylene) nanocomposites containing noble-metal nanoparticles: a systematic study of embedded particle stability. ACS Appl. Nano Mater. 1, 5188–5196 (2018).
-
Duncan, T. V., Bajaj, A. & Gray, P. J. Surface defects and particle size determine transport of CdSe quantum dots out of plastics and into the environment. J. Hazard. Mater. 439, 129687 (2022).
-
US Food and Drug Administration. Guidance for Industry: Preparation of Premarket Submissions for Food Contact Substances (Chemistry Recommendations, 2007).
-
Yang, T., Paulose, T., Redan, B. W., Mabon, J. C. & Duncan, T. V. Food and beverage ingredients induce the formation of silver nanoparticles in products stored within nanotechnology-enabled packaging. ACS Appl. Mater. Interfaces 13, 1398–1412 (2021).
-
Yang, T., Adhikari, L., Paulose, T., Bleher, R. & Duncan, T. V. Titanium dioxide and table sugar enhance the leaching of silver out of nanosilver packaging. Environ. Sci. Nano 10, 1689–1703 (2023).
-
Duncan, T. V. et al. Sulfides mediate the migration of nanoparticle mass out of nanocomposite plastics and into aqueous environments. NanoImpact 28, 100426 (2022).
-
Zaheer, Z., Kosa, S. A. & Akram, M. Interactions of Ag+ ions and Ag-nanoparticles with protein. A comparative and multi spectroscopic investigation. J. Mol. Liquids 335, 116226 (2021).
-
Liu, W., Worms, I. & Slaveykova, V. I. Interaction of silver nanoparticles with antioxidant enzymes. Environ. Sci. Nano 7, 1507–1517 (2020).
-
Rodzik, A. et al. Study on silver ions binding to β-lactoglobulin. Biophys. Chem. 291, 106897 (2022).
-
Dyrda-Terniuk, T. et al. Immobilization of silver ions onto casein. Colloids Surf. A 667, 131390 (2023).
-
Gołębiowski, A. et al. Binding of silver ions to alpha-lactalbumin. J. Mol. Struct. 1270, 133940 (2022).
-
Seiler, A. et al. Correlation of foodstuffs with ethanol–water mixtures with regard to the solubility of migrants from food contact materials. Food Addit. Contam. A 31, 498–511 (2014).
-
Ozaki, A., Gruner, A., Störmer, A., Brandsch, R. & Franz, R. Correlation between partition coefficients polymer/food simulant, KP,F, and octanol/water, log POW – a new approach in support of migration modeling and compliance testing. Deutsche Lebensmittel-Rundschau 106, 203–208 (2010).
-
US Food and Drug Administration. Guidance for Industry: Preparation of Food Contact Notifications for Food Contact Substances in Contact with Infant Formula and/or Human Milk (US Food and Drug Administration, 2019).
-
Adhikari, L., Larm, N. E. & Baker, G. A. Batch and flow nanomanufacturing of large quantities of colloidal silver and gold nanocrystals using deep eutectic solvents. ACS Sustain. Chem. Eng. 8, 14679–14689 (2020).
-
Jablonski, J. E. et al. Migration of quaternary ammonium cations from exfoliated clay/low-density polyethylene nanocomposites into food simulants. ACS Omega 4, 13349–13359 (2019).
-
Song, H., Li, B., Lin, Q. B., Wu, H. J. & Chen, Y. Migration of silver from nanosilver–polyethylene composite packaging into food simulants. Food Addit. Contam. A 28, 1758–1762 (2011).
-
Addo Ntim, S., Thomas, T. A., Begley, T. H. & Noonan, G. O. Characterisation and potential migration of silver nanoparticles from commercially available polymeric food contact materials. Food Addit. Contam. A 32, 1003–1011 (2015).
-
von Goetz, N. et al. Migration of silver from commercial plastic food containers and implications for consumer exposure assessment. Food Addit. Contam. A 30, 612–620 (2013).
-
Ha, H. & Payer, J. The effect of silver chloride formation on the kinetics of silver dissolution in chloride solution. Electrochim. Acta 56, 2781–2791 (2011).
-
Yang, Y. et al. Novel insights into the multistep chlorination of silver nanoparticles in aquatic environments. Water Res. 240, 120111 (2023).
-
Toncelli, C. et al. Silver nanoparticles in seawater: a dynamic mass balance at part per trillion silver concentrations. Sci. Total Environ. 601-602, 15–21 (2017).
-
Wimmer, A. et al. What happens to silver-based nanoparticles if they meet seawater? Water Res. 171, 115399 (2020).
-
Sanders, G. P. The determination of chloride in milk. J. Dairy Sci. 22, 841–852 (1939).
-
Nam, K. T., Lee, Y. J., Krauland, E. M., Kottmann, S. T. & Belcher, A. M. Peptide-mediated reduction of silver ions on engineered biological scaffolds. ACS Nano 2, 1480–1486 (2008).
-
Clem Gruen, L. Interaction of amino acids with silver(I) ions. Biochim. Biophys. Acta Prot. Struct. 386, 270–274 (1975).
-
Hedayati, S. A., Farsani, H. G., Naserabad, S. S., Hoseinifar, S. H. & Van Doan, H. Protective effect of dietary vitamin E on immunological and biochemical induction through silver nanoparticles (AgNPs) inclusion in diet and silver salt (AgNO3) exposure on Zebrafish (Danio rerio). Compar. Biochem. Physiol. C 222, 100–107 (2019).
-
Durmazel, S., Üzer, A., Erbil, B., Sayın, B. & Apak, R. Silver nanoparticle formation-based colorimetric determination of reducing sugars in food extracts via tollens’ reagent. ACS Omega 4, 7596–7604 (2019).
-
Pandey, S., De Klerk, C., Kim, J., Kang, M. & Fosso-Kankeu, E. Eco Friendly approach for synthesis, characterization and biological activities of milk protein stabilized silver nanoparticles. Polymers 12, 1418 (2020).
-
Lee, K.-J. et al. Synthesis of silver nanoparticles using cow milk and their antifungal activity against phytopathogens. Mater. Lett. 105, 128–131 (2013).
-
Williams, B., Gautham, I., Tony, L., Grady, G. T. & Fernando, H. Redox properties and temperature dependence of silver nanoparticles synthesized using pasteurized cow and goat milk. Green Chem. Lett. Rev. 15, 71–82 (2022).
-
Vanaja, M. et al. Phytosynthesis of silver nanoparticles by Cissus quadrangularis: influence of physicochemical factors. J. Nanostruct. Chem. 3, 17 (2013).
-
Adhikari, L., Larm, N. E., Bhawawet, N. & Baker, G. A. Rapid Microwave-assisted synthesis of silver nanoparticles in a halide-free deep eutectic solvent. ACS Sustain. Chem. Eng. 6, 5725–5731 (2018).
-
Kravets, V. et al. Imaging of biological cells using luminescent silver nanoparticles. Nanoscale Res. Lett. 11, 30 (2016).
-
Dhoondia, Z. H. & Chakraborty, H. Lactobacillus mediated synthesis of silver oxide nanoparticles. Nanomater. Nanotechnol. 2, 15 (2012).
-
Patterson, A. L. The Scherrer formula for x-ray particle size determination. Phys. Rev. 56, 978–982 (1939).
-
Priyashantha, H. et al. Composition and properties of bovine milk: a study from dairy farms in northern Sweden; Part I. Effect of dairy farming system. J. Dairy Sci. 104, 8582–8594 (2021).
-
Whitford, D. Proteins: Structure And Function (John Wiley & Sons, 2013).
-
Nayak, P. S. et al. Lactoferrin adsorption onto silver nanoparticle interface: Implications of corona on protein conformation, nanoparticle cytotoxicity and the formulation adjuvanticity. Chem. Eng. J. 361, 470–484 (2019).
-
Li, R., Lund, P., Nielsen, S. B. & Lund, M. N. Formation of whey protein aggregates by partial hydrolysis and reduced thermal treatment. Food Hydrocolloids 124, 107206 (2022).
-
Sobhaninia, M., Nasirpour, A., Shahedi, M., Golkar, A. & Desobry, S. Fabrication of whey proteins aggregates by controlled heat treatment and pH: Factors affecting aggregate size. Int. J. Biol. Macromol. 112, 74–82 (2018).
-
Gordon, L. & Pilosof, A. M. R. Application of high-intensity ultrasounds to control the size of whey proteins particles. Food Biophysics 5, 203–210 (2010).
-
Jambrak, A. R., Mason, T. J., Lelas, V., Paniwnyk, L. & Herceg, Z. Effect of ultrasound treatment on particle size and molecular weight of whey proteins. J. Food Eng. 121, 15–23 (2014).
-
Gołębiowski, A. et al. Isolation and self-association studies of beta-lactoglobulin. Int. J. Mol. Sci. 21, 9711 (2020).
-
Sengupta, B., Das, N. & Sen, P. Monomerization and aggregation of β-lactoglobulin under adverse condition: a fluorescence correlation spectroscopic investigation. Biochim. Biophys. Acta Proteins Proteomics 1866, 316–326 (2018).
-
Gu, X. et al. Using a silver-enhanced microarray sandwich structure to improve SERS sensitivity for protein detection. Anal. Bioanal. Chem. 406, 1885–1894 (2014).
-
Kurouski, D., Postiglione, T., Deckert-Gaudig, T., Deckert, V. & Lednev, I. K. Amide I vibrational mode suppression in surface (SERS) and tip (TERS) enhanced Raman spectra of protein specimens. Analyst 138, 1665–1673 (2013).
-
Boopathi, S. et al. Characterization and antimicrobial properties of silver and silver oxide nanoparticles synthesized by cell-free extract of a mangrove-associated pseudomonas aeruginosa M6 using two different thermal treatments. Ind. Eng. Chem. Res. 51, 5976–5985 (2012).
-
Holt, C., Carver, J. A., Ecroyd, H. & Thorn, D. C. Invited review: caseins and the casein micelle: their biological functions, structures, and behavior in foods1. J. Dairy Sci. 96, 6127–6146 (2013).
-
Dalgleish, D. G. & Corredig, M. The structure of the casein micelle of milk and its changes during processing. Annual Rev. Food Sci. Technol. 3, 449–467 (2012).
-
Aznar, M., Domeño, C. & Nerin, C. Determination of volatile migrants from breast milk storage bags. Food Packag. Shelf Life 40, 101196 (2023).
-
Schmid, P. & Welle, F. Chemical migration from beverage packaging materials—a review. Beverages 6, 37 (2020).
-
Guazzotti, V. et al. Styrene migration from polystyrene for food contact: a case study on the processing chain of yoghurt pots. Appl. Sci. 14, 9056 (2024).
-
O’Neill, E. T., Tuohy, J. J. & Franz, R. Comparison of milk and ethanol/water mixtures with respect to monostyrene migration from a polystyrene packaging material. Int. Dairy J. 4, 271–283 (1994).
-
ARORA, A. P. & HALEK, G. W. Structure and cohesive energy density of fats and their sorption by polymer films. J. Food Sci. 59, 1325–1327 (1994).
-
Michalski, M. C., Desobry, S., Babak, V. & Hardy, J. Adhesion of food emulsions to packaging and equipment surfaces. Colloids Surf. A 149, 107–121 (1999).
-
Hansson, K., Andersson, T. & Skepö, M. Adhesion of fermented diary products to packaging materials. Effect of material functionality, storage time, and fat content of the product. An empirical study. J. Food Eng. 111, 318–325 (2012).
-
Chen, M. et al. Silver nanoparticles capped by oleylamine: formation, growth, and self-organization. Langmuir 23, 5296–5304 (2007).
