Mixing regimes shape microbial community composition, nutrient regimes, and plant growth attributes in Jeevamrit: metagenomics and culturomics-based insights

mixing-regimes-shape-microbial-community-composition,-nutrient-regimes,-and-plant-growth-attributes-in-jeevamrit:-metagenomics-and-culturomics-based-insights
Mixing regimes shape microbial community composition, nutrient regimes, and plant growth attributes in Jeevamrit: metagenomics and culturomics-based insights

References

  1. Lal, R. Restoring soil quality to mitigate soil degradation. Sustainability 7, 5875–5895 (2015).

    Google Scholar 

  2. Sandrasekaran, M., Thilagam, V. K. & Khola, O. P. Soil and water conservation in India: Strategies and research challenges. J. Soil Water Conserv. 16, 312 (2017).

    Google Scholar 

  3. Fertiliser Association of India (FAI). Press Note 2023. The Fertiliser Association of India, New Delhi (2023).

  4. Dev, P., Paliyal, S. S. & Rana, N. Subhash palekar natural farming – scope, efficacy and critics. Environ. Conserv. J. 23, 99–106 (2022).

    Google Scholar 

  5. Kumar, R. et al. Adoption of Natural Farming and its Effect on Crop Yield and Farmers’ Livelihood in India. ICAR–National Academy of Agricultural Research Management, Hyderabad, India (2020).

  6. Saharan, B. S. et al. Application of Jeevamrit improves soil properties in zero budget natural farming fields. Agriculture 13, 196 (2023).

    Google Scholar 

  7. Darjee, S. et al. Empirical observation of natural farming inputs on nitrogen uptake, soil health, and crop yield of rice-wheat cropping system in the organically managed Inceptisol of Trans Gangetic plain. Front. Sustain. Food Syst. 8, 1324798 (2024).

    Google Scholar 

  8. Shu, X. et al. Organic amendments enhance soil microbial diversity, microbial functionality and crop yields: A meta-analysis. Sci. Total Environ. 829, 154627 (2022).

    Google Scholar 

  9. Liu, W. et al. Positive effects of organic amendments on soil microbes and their functionality in agro-ecosystems. Plants 12, 3790 (2023).

    Google Scholar 

  10. Song, D. et al. Organic amendment regulates soil microbial biomass and activity in wheat-maize and wheat-soybean rotation systems. Agric. Ecosyst. Environ. 333, 107974 (2022).

    Google Scholar 

  11. Pandia, S., Trivedi, A., Sharma, S. K. & Yadav, S. Evaluation of Jeevamrut and its constituents against alternaria leaf spot of mungbean in-vitro and under cage house condition in Rajasthan. Int. J. Curr. Microbiol. Appl. Sci. 8, 2240–2251 (2019).

    Google Scholar 

  12. Xu, J., Li, Y. & Li, L. A comprehensive review of the effects of organic amendments on soil health and fertility: Mechanisms, greenhouse gas emissions, and implications for sustainable agriculture. Agronomy 15, 2705 (2025).

    Google Scholar 

  13. Shraddha, et al. Impact of fermented organic formulations combined with inorganic fertilizers on broccoli (Brassica oleracea L. var. italica Plenck) cv. Palam Samridhi. Heliyon 9, e20321 (2023).

    Google Scholar 

  14. Kaushal, N. et al. Jeevamrit: A sustainable alternative to chemical fertilizers for marigold (Tagetes erecta cv. Siracole) cultivation under mid-hills of Himachal Pradesh. Horticulturae 10, 846 (2024).

    Google Scholar 

  15. Sarkar, S. et al. Natural and organic input-based integrated nutrient-management practices enhance the productivity and soil quality index of rice–mustard–green gram cropping system. Land 13, 1933 (2024).

    Google Scholar 

  16. Smith, J., Yeluripati, J., Smith, P. & Nayak, D. R. Potential yield challenges to scale-up of zero budget natural farming. Nat. Sustain. 3, 247–252 (2020).

    Google Scholar 

  17. Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    Google Scholar 

  18. Heberle, H., Meirelles, G. V., Da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16, 169 (2015).

    Google Scholar 

  19. Tamura, K., Stecher, G. & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38, 3022–3027 (2021).

    Google Scholar 

  20. Letunic, I. & Bork, P. Interactive Tree of Life (iTOL) v6: Recent updates to the phylogenetic tree display and annotation tool. Nucleic Acids Res. 52, W78–W82 (2024).

    Google Scholar 

  21. Louca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).

    Google Scholar 

  22. Douglas, G. M. et al. PICRUSt2: An improved and extensible approach for metagenome inference. bioRxiv 672295 (2019). Preprint

  23. Gotz, S. et al. High-throughput functional annotation and data mining with the Blast2GO suite. Nucleic Acids Res. 36, 3420–3435 (2008).

    Google Scholar 

  24. Rho, M., Tang, H. & Ye, Y. FragGeneScan: Predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191–e191 (2010).

    Google Scholar 

  25. Lu, J. et al. Metagenome analysis using the Kraken software suite. Nat. Protoc. 17, 2815–2839 (2022).

    Google Scholar 

  26. Jensen, L. J. et al. eggNOG: Automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 36, D250–D254 (2007).

    Google Scholar 

  27. Tamames, J. & Puente-Sánchez, F. SqueezeMeta, A highly portable, fully automatic metagenomic analysis pipeline. Front. Microbiol. 9, 3349 (2019).

    Google Scholar 

  28. Wu, Y.-W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).

    Google Scholar 

  29. Kang, D. D. et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).

    Google Scholar 

  30. Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).

    Google Scholar 

  31. Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).

    Google Scholar 

  32. Overbeek, R. et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D206–D214 (2014).

    Google Scholar 

  33. Arkin, A. P. et al. KBase: The United States department of energy systems biology knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).

    Google Scholar 

  34. Watanabe, F. S. & Olsen, S. R. Test of an ascorbic acid method for determining phosphorus in water and NaHCO3 extracts from soil. Soil Sci. Soc. Am. J. 29, 677–678 (1965).

    Google Scholar 

  35. Rajawat, M. V. S., Singh, S., Tyagi, S. P. & Saxena, A. K. A modified plate assay for rapid screening of potassium-solubilizing bacteria. Pedosphere 26, 768–773 (2016).

    Google Scholar 

  36. Gordon, S. A. & Weber, R. P. Colorimetric estimation of indoleacetic acid. Plant Physiol 26, 192 (1951).

    Google Scholar 

  37. Papade, S. E., Mohapatra, B. & Phale, P. S. Pseudomonas and Acinetobacter spp. capable of metabolizing aromatics displays multifarious plant growth promoting traits: Insights on strategizing consortium-based application to agro-ecosystems. Environ. Technol. Innov. 36, 103786 (2024).

    Google Scholar 

  38. Hall, T. B. I. & Carlsbad, C. J. BioEdit: An important software for molecular biology. GERF Bull. Biosci. 2, 60–61 (2011).

    Google Scholar 

  39. Hammer, Ø. et al. PAST: Paleontological statistics software package for education and data analysis. Palaeont. Electr. 4, 9 (2001).

  40. Feng, K. et al. iNAP: An integrated network analysis pipeline for microbiome studies. iMeta 1, e13 (2022).

    Google Scholar 

  41. Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).

    Google Scholar 

  42. Csardi, G. & Nepusz, T. The igraph software package for complex network research. InterJournal Complex Syst. 1695, 1–9 (2006).

    Google Scholar 

  43. Lu, Y. et al. MicrobiomeAnalyst 2.0: Comprehensive statistical, functional and integrative analysis of microbiome data. Nucleic Acids Res. 51, W310–W318 (2023).

    Google Scholar 

  44. Pang, Z. et al. MetaboAnalyst 6.0: Towards a unified platform for metabolomics data processing, analysis and interpretation. Nucleic Acids Res. 52, W398–W406 (2024).

    Google Scholar 

  45. Lakshmanan, R. et al. Optimization, characterization and quantification of indole acetic acid produced by a potential plant growth promoting rhizobacterium Bacillus safensis YKS2 from Yercaud Hills, Eastern Ghats. J. Pure Appl. Microbiol. 16, 1998–2009 (2022).

    Google Scholar 

  46. Shan, Y. et al. Insights into the biocontrol and plant growth promotion functions of Bacillus altitudinis strain KRS010 against Verticillium dahliae. BMC Biol. 22, 116 (2024).

    Google Scholar 

  47. Mussa, A., Million, T. & Assefa, F. Rhizospheric bacterial isolates of grass pea (Lathyrus sativus L.) endowed with multiple plant growth promoting traits. J. Appl. Microbiol. 125, 1786–1801 (2018).

    Google Scholar 

  48. Boss, B. L., Wanees, A. E., Zaslow, S. J., Normile, T. G. & Izquierdo, J. A. Comparative genomics of the plant-growth promoting bacterium Sphingobium sp. strain AEW4 isolated from the rhizosphere of the beachgrass Ammophila breviligulata. BMC Genom. 23, 508 (2022).

    Google Scholar 

  49. Sidhu, A. S., Shard, D., Aulakh, C. S., Bhullar, S. S. & Singh, S. Evaluating the sustainability of natural, organic and conventional farming practices: A comparative study in maize-wheat cropping system in North-west India. Environ. Dev. Sustain. (2025).

  50. Xu, Z. & Tsang, D. C. W. Mineral-mediated stability of organic carbon in soil and relevant interaction mechanisms. Eco-Environ. Health 3, 59–76 (2024).

    Google Scholar 

  51. Tong, Y. et al. Bio-organic fertilizer enhances soil mineral solubilization, microbial community stability, and fruit quality in an 8-year watermelon continuous cropping system. Biol. Fertil. Soils 61, 747–760 (2025).

    Google Scholar 

  52. Dhiman, S., Kumar, S., Baliyan, N., Dheeman, S. & Maheshwari, D. K. Cattle dung manure microbiota as a substitute for mineral nutrients and growth management practices in plants. In Endophytes: Mineral nutrient management, Volume 3 Vol. 26 (eds Maheshwari, D. K. & Dheeman, S.) 77–103 (Springer, 2021).

    Google Scholar 

  53. Cory, R. M. et al. Singlet oxygen in the coupled photochemical and biochemical oxidation of dissolved organic matter. Environ. Sci. Technol. 44, 3683–3689 (2010).

    Google Scholar 

  54. Khalid, R. A., Patrick, W. H. & Gambrell, R. P. Effect of dissolved oxygen on chemical transformations of heavy metals, phosphorus, and nitrogen in an estuarine sediment. Estuar. Coast. Mar. Sci. 6, 21–35 (1978).

    Google Scholar 

  55. Grzyb, A., Wolna-Maruwka, A. & Niewiadomska, A. The significance of microbial transformation of nitrogen compounds in the light of integrated crop management. Agronomy 11, 1415 (2021).

    Google Scholar 

  56. Coby, A. J., Picardal, F., Shelobolina, E., Xu, H. & Roden, E. E. Repeated anaerobic microbial redox cycling of iron. Appl. Environ. Microbiol. 77, 6036–6042 (2011).

    Google Scholar 

  57. Wang, M., Song, G., Zheng, Z., Mi, X. & Song, Z. Exploring the impact of fulvic acid and humic acid on heavy metal availability to alfalfa in molybdenum contaminated soil. Sci. Rep. 14, 32037 (2024).

    Google Scholar 

  58. Reuter, H., Gensel, J., Elvert, M. & Zak, D. Evidence for preferential protein depolymerization in wetland soils in response to external nitrogen availability provided by a novel FTIR routine. Biogeosciences 17, 499–514 (2020).

    Google Scholar 

  59. Wilpiszeski, R. L. et al. Soil aggregate microbial communities: Towards understanding microbiome interactions at biologically relevant scales. Appl. Environ. Microbiol. 85, e00324-e419 (2019).

    Google Scholar 

  60. Totsche, K. U. et al. Microaggregates in soils. J. Plant Nutr. Soil Sci. 181, 104–136 (2018).

    Google Scholar 

  61. Keiluweit, M., Gee, K., Denney, A. & Fendorf, S. Anoxic microsites in upland soils dominantly controlled by clay content. Soil Biol. Biochem. 118, 42–50 (2018).

    Google Scholar 

  62. Conde-Pérez, K. et al. In-depth analysis of the role of the acinetobactin cluster in the virulence of Acinetobacter baumannii. Front. Microbiol. 12, 752070 (2021).

    Google Scholar 

  63. Peng, R., Zhu, Q., Li, S. & Liu, H. Nitrate concentration mediates iron transformation by an iron-oxidizing–reducing bacterium in the Fe (II)–Fe (III) co-existing system. Environ. Sci. Process. Impacts 27, 2941–2954 (2025).

    Google Scholar 

  64. Wu, T. et al. Pseudomonas aeruginosa L10: A hydrocarbon-degrading, biosurfactant-producing, and plant-growth-promoting endophytic bacterium isolated from a reed (Phragmites australis). Front. Microbiol. 9, 1087 (2018).

    Google Scholar 

  65. Zhang, M., Li, A., Yao, Q., Xiao, B. & Zhu, H. Pseudomonas oligotrophica sp. Nov., a novel denitrifying bacterium possessing nitrogen removal capability under low carbon-nitrogen ratio condition. Front. Microbiol. 13, 882890 (2022).

    Google Scholar 

  66. Kalidasan, V., Joseph, N., Kumar, S., Awang Hamat, R. & Neela, V. K. Iron and virulence in Stenotrophomonas Maltophilia: all we know so far. Front. Cell. Infect. Microbiol. 8, 401 (2018).

    Google Scholar 

  67. Xiao, Y. et al. Comparative genomic analysis of Stenotrophomonas maltophilia strain W18 reveals its adaptative genomic features for degrading polycyclic aromatic hydrocarbons. Microbiol. Spectr. 9, e01420-e1421 (2021).

    Google Scholar 

  68. Caskey, W. H. & Tiedje, J. M. The reduction of nitrate to ammonium by a clostridium sp. Isolated from soil. Microbiology 119, 217–223 (1980).

    Google Scholar 

  69. Li, M.-J., Wei, M.-Y., Fan, X.-T. & Zhou, G.-W. Underestimation about the contribution of nitrate reducers to iron cycling indicated by Enterobacter strain. Molecules 27, 5581 (2022).

    Google Scholar 

  70. He, H., Carlson, A. L., Nielsen, P. H., Zhou, J. & Daigger, G. T. Comparative analysis of floc characteristics and microbial communities in anoxic and aerobic suspended growth processes. Water Environ. Res. 94, e10822 (2022).

    Google Scholar 

  71. Philippot, L. Denitrifying genes in bacterial and Archaeal genomes. Biochim. Biophys. Acta BBA Gene Struct. Expr. 1577, 355–376 (2002).

    Google Scholar 

  72. Chen, J.-S., Toth, J. & Kasap, M. Nitrogen-fixation genes and nitrogenase activity in Clostridium acetobutylicum and Clostridium beijerinckii. J. Ind. Microbiol. Biotechnol. 27, 281–286 (2001).

    Google Scholar 

  73. Xie, F., Ma, H., Quan, S., Liu, D. & Chen, G. Comamonas phosphati sp. Nov., isolated from a phosphate mine. Int. J. Syst. Evol. Microbiol. 66, 456–461 (2016).

    Google Scholar 

  74. Suliasih, & Widawati, S. Inorganic and organic phosphate solubilization potential of Stenotrophomonas maltophilia. IOP Conf. Ser. Earth Environ. Sci. 948, 012054 (2021).

    Google Scholar 

  75. Bhattacharya, S., Bachani, P., Jain, D., Patidar, S. K. & Mishra, S. Extraction of potassium from K-feldspar through potassium solubilization in the halophilic Acinetobacter soli (MTCC 5918) isolated from the experimental salt farm. Int. J. Miner. Process. 152, 53–57 (2016).

    Google Scholar 

  76. Nwokeh, U. J., Okoro, I. G. & Orodeji, C. U. Isolation, identification and phylogenetic characterization of potassium-solubilizing rhizobacteria isolated from the roots of Mimosa indica weed. FUDMA J. Sci. 7, 280–285 (2023).

    Google Scholar 

  77. Wu, Y., Zaiden, N. & Cao, B. The core- and pan-genomic analyses of the genus Comamonas: From environmental adaptation to potential virulence. Front. Microbiol. 9, 3096 (2018).

    Google Scholar 

  78. Allison, N., O’Donnell, M. J. & Fewson, C. A. Membrane-bound lactate dehydrogenases and mandelate dehydrogenases of Acinetobacter calcoaceticus. Purification and properties. Biochem. J. 231, 407–416 (1985).

    Google Scholar 

  79. Liew, F. et al. Metabolic engineering of Clostridium autoethanogenum for selective alcohol production. Metab. Eng. 40, 104–114 (2017).

    Google Scholar 

  80. Xiong, W., Reyes, L. H., Michener, W. E., Maness, P. & Chou, K. J. Engineering cellulolytic bacterium Clostridium thermocellum to co-ferment cellulose- and hemicellulose-derived sugars simultaneously. Biotechnol. Bioeng. 115, 1755–1763 (2018).

    Google Scholar 

  81. Cornelis, P. & Dingemans, J. Pseudomonas aeruginosa adapts its iron uptake strategies in function of the type of infections. Front. Cell. Infect. Microbiol. 3, 75 (2013).

    Google Scholar 

  82. Gaddy, J. A. et al. Role of acinetobactin-mediated iron acquisition functions in the interaction of Acinetobacter baumannii strain ATCC 19606T with human lung epithelial cells, Galleria mellonella caterpillars, and mice. Infect. Immun. 80, 1015–1024 (2012).

    Google Scholar 

  83. Nas, M. Y. & Cianciotto, N. P. Stenotrophomonas maltophilia produces an EntC-dependent catecholate siderophore that is distinct from enterobactin. Microbiology 163, 1590–1603 (2017).

    Google Scholar 

  84. Glickmann, E. et al. Auxin production is a common feature of most pathovars of Pseudomonas syringae. Mol. Plant. Microbe Interact. 11, 156–162 (1998).

    Google Scholar 

  85. Spaepen, S. & Vanderleyden, J. Auxin and plant-microbe interactions. Cold Spring Harb. Perspect. Biol. 3, a001438–a001438 (2011).

    Google Scholar 

  86. Byappanahalli, M. N., Nevers, M. B., Korajkic, A., Staley, Z. R. & Harwood, V. J. Enterococci in the environment. Microbiol. Mol. Biol. Rev. 76, 685–706 (2012).

    Google Scholar 

  87. Ueki, A. Paludibacter propionicigenes gen. nov., a novel strictly anaerobic, Gram-negative, propionate-producing bacterium isolated from plant residue in irrigated rice-field soil in Japan. Int. J. Syst. Evol. Microbiol. 56, 39–44 (2006).

    Google Scholar 

  88. Patakova, P., Linhova, M., Rychtera, M., Paulova, L. & Melzoch, K. Novel and neglected issues of acetone–butanol–ethanol (ABE) fermentation by clostridia: Clostridium metabolic diversity, tools for process mapping and continuous fermentation systems. Biotechnol. Adv. 31, 58–67 (2013).

    Google Scholar 

  89. Soares, R. et al. Antibiotic resistance of enterococcus species in ornamental animal feed. Animals 13, 1761 (2023).

    Google Scholar 

  90. Petit, E. et al. Genome and transcriptome of Clostridium phytofermentans, catalyst for the direct conversion of plant feedstocks to fuels. PLoS ONE 10, e0118285 (2015).

    Google Scholar 

  91. Doloman, A., Boeren, S., Miller, C. D. & Sousa, D. Z. Stimulating effect of Trichococcus flocculiformis on a coculture of Syntrophomonas wolfei and Methanospirillum hungatei. Appl. Environ. Microbiol. 88, e00391-e422 (2022).

    Google Scholar 

  92. Cherif-Silini, H., Silini, A., Yahiaoui, B., Ouzari, I. & Boudabous, A. Phylogenetic and plant-growth-promoting characteristics of Bacillus isolated from the wheat rhizosphere. Ann. Microbiol. 66, 1087–1097 (2016).

    Google Scholar 

  93. Devi, S. et al. Screening for multifarious plant growth promoting and biocontrol attributes in Bacillus strains isolated from indo gangetic soil for enhancing growth of rice crops. Microorganisms 11, 1085 (2023).

    Google Scholar 

  94. Rizzi, A., Roy, S., Bellenger, J.-P. & Beauregard, P. B. Iron homeostasis in Bacillus subtilis requires siderophore production and biofilm formation. Appl. Environ. Microbiol. 85, e02439-e2518 (2019).

    Google Scholar 

  95. Anzuay, M. S., Ludueña, L. M., Angelini, J. G., Fabra, A. & Taurian, T. Beneficial effects of native phosphate solubilizing bacteria on peanut (Arachis hypogaea L.) growth and phosphorus acquisition. Symbiosis 66, 89–97 (2015).

    Google Scholar 

  96. Lee, K.-E. et al. Enterococcus faecium LKE12 cell-free extract accelerates host plant growth via gibberellin and indole-3-acetic acid secretion. J. Microbiol. Biotechnol. 25, 1467–1475 (2015).

    Google Scholar 

  97. Pavic, A., Stankovic, S. & Marjanovic, Z. Biochemical characterization of a sphingomonad isolate from the ascocarp of white truffle (Tuber magnatum Pico). Arch. Biol. Sci. 63, 697–704 (2011).

    Google Scholar 

  98. Patel, M. et al. Zero budget natural farming components Jeevamrit and Beejamrit augment Spinacia oleracea L. (spinach) growth by ameliorating the negative impacts of the salt and drought stress. Front. Microbiol. 15, 1326390 (2024).

    Google Scholar 

  99. Warghane, A., Thakkar, J., Bhardwaj, G., Bhatt, V. & Chopade, B. A. Isolation and characterization of major cultivable bacteria from novel natural fertilizer with comprehensive nutrient analysis. J. Pure Appl. Microbiol. 19, 197–209 (2025).

    Google Scholar 

  100. Devanga Ragupathi, N. K., Muthuirulandi Sethuvel, D. P., Inbanathan, F. Y. & Veeraraghavan, B. Accurate differentiation of Escherichia coli and Shigella serogroups: Challenges and strategies. New Microbes New Infect. 21, 58–62 (2018).

    Google Scholar 

Download references