Modulation of double network assembly via different calcium sources and GDL concentrations for simulating intramuscular fat

modulation-of-double-network-assembly-via-different-calcium-sources-and-gdl-concentrations-for-simulating-intramuscular-fat
Modulation of double network assembly via different calcium sources and GDL concentrations for simulating intramuscular fat

References

  1. Boutari, C. & Mantzoros, C. S. A. 2022 update on the epidemiology of obesity and a call to action: as its twin COVID-19 pandemic appears to be receding, the obesity and dysmetabolism pandemic continues to rage on. Metabolism 133, 155217 (2022).

    Google Scholar 

  2. Kupikowska-Stobba, B. et al. Controlled lipid digestion in the development of functional and personalized foods for a tailored delivery of dietary fats. Food Chem 466, 142151 (2025).

    Google Scholar 

  3. Shi, Q. et al. Paternal preconceptional supplementation of n-3 polyunsaturated fatty acids alleviates offspring nonalcoholic fatty liver disease in high-fat diet-induced obese mice. Food Front 5, 535–557 (2024).

    Google Scholar 

  4. Herrero, A. M. & Ruiz-Capillas, C. Novel lipid materials based on gelling procedures as fat analogues in the development of healthier meat products. Curr. Opin. Food Sci. 39, 1–6 (2021).

    Google Scholar 

  5. Liu, X. et al. Challenges, process technologies, and potential synthetic biology opportunities for plant-based meat production. LWT 184, 115109 (2023).

    Google Scholar 

  6. Sangsuriyawong, A. et al. Preparation of fat-free mulberry ice cream by using inulin and whey protein isolate as a fat substitute. eFood 5, e70006 (2024).

    Google Scholar 

  7. Ren, Y. et al. Effect of variation in basic emulsion structure and polysaccharide content on the physicochemical properties and structure of composite-based emulsion gels as cube fat mimetics. Food Chem 434, 137450 (2024).

    Google Scholar 

  8. Zhang, T. et al. Effects of konjac glucomannan on physical properties and microstructure of fish myofibrillar protein gel: Phase behaviours involved. Food Hydrocoll 134, 108034 (2023).

    Google Scholar 

  9. Cao, C. et al. Textural and gel properties of frankfurters as influenced by various κ-carrageenan incorporation methods. Meat Sci 176, 108483 (2021).

    Google Scholar 

  10. Zhao, D. et al. Salt ions improve soybean protein isolate/curdlan complex fat substitutes: effect of molecular interactions on freeze-thaw stability. Int. J. Biol. Macromol. 272, 132774 (2024).

    Google Scholar 

  11. Ren, Y. et al. Influence of variation in phase ratio and protein content on physicochemical properties and structure of soy protein isolate-konjac glucomannan double emulsion gels applicable as solid cubic fat substitutes. Food Chem 465, 142023 (2025).

    Google Scholar 

  12. Czapalay, E. S., Dobson, S. & Marangoni, A. G. Legume starch and flour-based emulsion gels as adipose tissue mimetics in plant-based meat products. Future Foods 11, 100578 (2025).

    Google Scholar 

  13. Ye, X. et al. Fabrication of food polysaccharide, protein, and polysaccharide-protein composite gels via calcium ion inducement: Gelation mechanisms, conditional factors, and applications. Int. J. Biol. Macromol. 279, 135397 (2024).

    Google Scholar 

  14. Lin, S. et al. Effects of ultrasound combined with κ-carrageenan on the rheological behaviours, textural properties and microstructures of meat batters before and after heating treatment. Food Hydrocoll 164, 111234 (2025).

    Google Scholar 

  15. Xu, Q. et al. Functionality and application of emulsion gels in fat replacement strategies for dairy products. Trends Food Sci. Technol 152, 104673 (2024).

    Google Scholar 

  16. Yan, J. et al. Effect of calcium ions concentration on the properties and microstructures of doubly induced sorghum arabinoxylan/soy protein isolate mixed gels. Food Hydrocoll 133, 107997 (2022).

    Google Scholar 

  17. Huang, X. et al. Research progress on double-network hydrogels. Mater. Today Commun. 29, 102757 (2021).

    Google Scholar 

  18. Yiu, C. C. Y., Wang, Y. & Selomulya, C. Double network as a design paradigm for structuring emulsion gels in food. Comprehens. Rev. Food Sci. Food Saf. 24, e70201 (2025).

    Google Scholar 

  19. Yan, W. et al. Corn fiber gum-soybean protein isolate double network hydrogel as oral delivery vehicles for thermosensitive bioactive compounds. Food Hydrocoll 107, 105865 (2020).

    Google Scholar 

  20. Wang, Y. et al. A combined enzymatic and ionic cross-linking strategy for pea protein/sodium alginate double-network hydrogel with excellent mechanical properties and freeze-thaw stability. Food Hydrocoll 131, 107737 (2022).

    Google Scholar 

  21. Li, A., Gong, T., Hou, Y., Yang, X. & Guo, Y. Alginate-stabilized thixotropic emulsion gels and their applications in fabrication of low-fat mayonnaise alternatives. Int. J. Biol. Macromol. 146, 821–831 (2020).

    Google Scholar 

  22. Wang, S. et al. Soybean protein isolate-sodium alginate double network emulsion gels: Mechanism of formation and improved freeze-thaw stability. Int. J. Biol. Macromol. 274, 133296 (2024).

    Google Scholar 

  23. Williams, A. H. et al. Printable homocomposite hydrogels with synergistically reinforced molecular-colloidal networks. Nat. Commun. 12 (2021).

  24. Zhang, R., Liu, J., Cao, S., Yan, Z. & Liu, X. Tailoring an egg white protein double network emulsion gel as a novel fat substitute for improving freeze-thaw stability of minced meat gel. Food Hydrocoll 150, 109763 (2024).

    Google Scholar 

  25. Ye, X. et al. Soy protein isolate-sodium alginate emulsion gel co-construction of a dual network system for the development of three-dimensional simulated fats: effect of sodium alginate concentration and calcium ion addition. Food Chem 487, 144652 (2025).

    Google Scholar 

  26. Zhuang, X. et al. The effect of insoluble dietary fiber on myofibrillar protein emulsion gels: oil particle size and protein network microstructure. LWT 101, 534–542 (2019).

    Google Scholar 

  27. Zhu, Y., Chen, X., McClements, D. J., Zou, L. & Liu, W. pH-, ion- and temperature-dependent emulsion gels: Fabricated by addition of whey protein to gliadin-nanoparticle coated lipid droplets. Food Hydrocoll 77, 870–878 (2018).

    Google Scholar 

  28. Su, C. et al. Effect of sodium alginate on the stability of natural soybean oil body emulsions. RSC Adv 8, 4731–4741 (2018).

    Google Scholar 

  29. Cheng, H., Garcia, A. C., Tang, N., Danielsen, B. P. & Skibsted, L. H. Combinations of isocitrate and citrate enhance calcium salt solubility and supersaturation robustness. Int. Dairy J. 85, 225–236 (2018).

    Google Scholar 

  30. Yu, B., Miao, S., Ding, M. & Ren, Y. Solubility and physical properties of α-calcium sulfate hemihydrate in NaCl and glycerol aqueous solutions at 303.15, 323.15, and 343.15 kJ. Chem. Eng. Data 66, 3686–3694 (2021).

    Google Scholar 

  31. Zhao, H. et al. The self-regulating on cohesion properties of calcium phosphate/ calcium sulfate bone cement improved by citric acid/sodium alginate. Colloids Surf. B Biointerfaces 231, 113548 (2023).

    Google Scholar 

  32. Taherdangkoo, R. et al. Experimental data on solubility of the two calcium sulfates gypsum and anhydrite in aqueous solutions. Data 7, 140 (2022).

    Google Scholar 

  33. Ben Djemaa, I. et al. Glucono-delta-lactone-induced alginate gelation: new insights into the effect of the cross-linker carrier type on the hydrogel mechanics. Langmuir 40, 10492–10501 (2024).

    Google Scholar 

  34. Posavec, L. et al. Dissolution and storage stability of nanostructured calcium carbonates and phosphates for nutrition. J. Nanopart. Res. 18, 310 (2016).

    Google Scholar 

  35. Lee, P. & Rogers, M. A. Effect of calcium source and exposure-time on basic caviar spherification using sodium alginate. Int. J. Gastron. Food Sci. 1, 96–100 (2012).

    Google Scholar 

  36. Li, A. et al. Gelation mechanism and physical properties of glucono-δ-lactone induced alginate sodium/casein composite gels. Food Hydrocoll 118, 106775 (2021).

    Google Scholar 

  37. Bao, H., Ni, Y., Wusigale, Dong, H. & Liang, L. α-Tocopherol and resveratrol in emulsion-filled whey protein gels: Co-encapsulation and in vitro digestion. Int. Dairy J. 104, 104649 (2020).

    Google Scholar 

  38. Wang, Y.-S. et al. Double cross-linked emulsion gels stabilized by flaxseed protein and chitosan: Effects of CaCO3 content on gel properties, stability and curcumin digestive characteristics. Food Chem 477, 143503 (2025).

    Google Scholar 

  39. Zhang, K. et al. Effects of calcium chloride on the gelling and digestive characteristics of myofibrillar protein in Litopenaeus vannamei. Food Chem 441, 138348 (2024).

    Google Scholar 

  40. Murekatete, N., Hua, Y., Chamba, M. V. M., Djakpo, O. & Zhang, C. Gelation behavior and rheological properties of salt- or acid-induced soy proteins soft Tofu-type gels. J. Texture Stud. 45, 62–73 (2014).

    Google Scholar 

  41. Luo, Y. et al. Physicochemical properties and in vitro digestion behavior of emulsion gels stabilized by rice bran protein aggregates: effects of heating time and induction methods. Food Res. Int. 170, 112976 (2023).

    Google Scholar 

  42. Yan, J., Jia, X., Yan, W. & Yin, L. Double-network hydrogels of corn fiber gum and soy protein isolate: effect of biopolymer constituents and pH values on textural properties and microstructures. Foods 10, 356 (2021).

    Google Scholar 

  43. Yang, X., Ren, Y., Liu, H., Huo, C. & Li, L. Differences in the physicochemical, digestion and microstructural characteristics of soy protein gel acidified with lactic acid bacteria, glucono-δ-lactone and organic acid. Int. J. Biol. Macromol. 185, 462–470 (2021).

    Google Scholar 

  44. Zhang, R. et al. Double network emulsion gel prepared with different polyphenol modified egg white protein: A promising fat substitute for oral processing and fatty taste supplement. Food Chem 465, 142082 (2025).

    Google Scholar 

  45. Xia, Q., Gu, M., Liu, J., Niu, Y. & Yu, L. Novel composite gels of gelatin and soluble dietary fiber from black bean coats with interpenetrating polymer networks. Food Hydrocoll 83, 72–78 (2018).

    Google Scholar 

  46. Hashemi, S. J., Hormozi, F. & Mokhtari, R. Controlling the gelation time of sodium silicate gelants for fluid management in hydrocarbon reservoirs. Fuel 341, 127645 (2023).

    Google Scholar 

  47. Ashkar, A., Laufer, S., Rosen-Kligvasser, J., Lesmes, U. & Davidovich-Pinhas, M. Impact of different oil gelators and oleogelation mechanisms on digestive lipolysis of canola oil oleogels. Food Hydrocoll 97, 105218 (2019).

    Google Scholar 

  48. Han, L. et al. Effects of inducer type and concentration on the formation mechanism of W/O/W double emulsion gels. Food Chem 379, 132166 (2022).

    Google Scholar 

  49. Zhang, M., Yang, Y. & Acevedo, N. C. Effects of pre-heating soybean protein isolate and transglutaminase treatments on the properties of egg-soybean protein isolate composite gels. Food Chem 318, 126421 (2020).

    Google Scholar 

  50. Xu, Y., He, C. & Zhou, Z. Modulating the texture of heat-set gels of phosphorylated walnut protein isolates through Glucono-δ-lactone acidification. Food Chem 437, 137734 (2024).

    Google Scholar 

  51. Liu, W. et al. Effects of different hydrocolloids on gelatinization and gels structure of chestnut starch. Food Hydrocoll 120, 106925 (2021).

    Google Scholar 

  52. Shen, P., Ma, X., Gouzy, R., Landman, J. & Sagis, L. M. C. Gelation properties of three common pulse proteins: lentil, faba bean and chickpea. Food Hydrocoll 164, 111245 (2025).

    Google Scholar 

  53. Guan, H. et al. Effect of sodium alginate on freeze-thaw stability of deacetylated konjac glucomannan gel. J. Food Eng. 383, 112239 (2024).

    Google Scholar 

  54. Pi, X. et al. Insight of soy protein isolate to decrease the gel properties corn starch based binary system: Rheological and structural investigation. Food Hydrocoll 160, 110750 (2025).

    Google Scholar 

  55. Ren, S. et al. Potentially texture-modified food for dysphagia: Gelling, rheological, and water fixation properties of rice starch–soybean protein composite gels in various ratios. Food Hydrocoll 153, 110025 (2024).

    Google Scholar 

  56. Sandjian, M. E. & Martínez, K. D. Emulsions, foams, and gels structure design formulated with soy protein isolate and calcium for vegan consumers. Food Human 4, 100490 (2025).

    Google Scholar 

  57. Wang, X. et al. Effects of the size and content of protein aggregates on the rheological and structural properties of soy protein isolate emulsion gels induced by CaSO4. Food Chem 221, 130–138 (2017).

    Google Scholar 

  58. Qiu, G. et al. Litchi polyphenols and carboxylated cellulose nanofiber synergistically improve the gel properties of κ-carrageenan gels: Insight from rheology, morphology and interaction computational simulation. Food Hydrocoll 166, 111292 (2025).

    Google Scholar 

  59. Brito-Oliveira, T. C., Moraes, I. C. F., Pinho, S. C. & Campanella, O. H. Modeling creep/recovery behavior of cold-set gels using different approaches. Food Hydrocoll 123, 107183 (2022).

    Google Scholar 

  60. Li, X. et al. Fat substitute in salad dressing: The role of soybean oil body self-aggregates in enhancing texture and rheological property. Food Res. Int. 204, 115909 (2025).

    Google Scholar 

  61. Parmar, S., Kumar, Y. & Kumar, P. Ultrasound pretreatment-enhanced OSA esterification of proso millet starch for application in low-fat mayonnaise. Food Chem 494, 146174 (2025).

    Google Scholar 

  62. Ali, A. H. et al. Fermented camel milk influenced by soy extract: Apparent viscosity, viscoelastic properties, thixotropic behavior, and biological activities. J. Dairy Sci. 106, 6671–6687 (2023).

    Google Scholar 

  63. Chen, H. et al. The linear/nonlinear rheological behaviors of Pickering emulsion stabilized by Zein and Xanthan gum: Effect of interfacial assembly strategies. Food Hydrocoll 145, 109116 (2023).

    Google Scholar 

  64. Karimi, S., Ghanbarzadeh, B., Roufegarinejad, L. & Falcone, P. M. Physicochemical and rheological characterization of a novel hydrocolloid extracted from Althaea officinalis root. LWT 167, 113832 (2022).

    Google Scholar 

  65. Lin, D., Kelly, A. L. & Miao, S. The role of mixing sequence in structuring O/W emulsions and emulsion gels produced by electrostatic protein-polysaccharide interactions between soy protein isolate-coated droplets and alginate molecules. Food Hydrocoll 113, 106537 (2021).

    Google Scholar 

  66. Zhu, Q. et al. Encapsulation of lycopene in Pickering emulsion stabilized by complexes of whey protein isolate fibrils and sodium alginate: Physicochemical property, structural characterization and in vitro digestion property. Food Res. Int. 191, 114675 (2024).

    Google Scholar 

  67. Paques, J. P., Sagis, L. M. C., van Rijn, C. J. M. & van der Linden, E. Nanospheres of alginate prepared through w/o emulsification and internal gelation with nanoparticles of CaCO3. Food Hydrocoll 40, 182–188 (2014).

    Google Scholar 

  68. Lan, T. et al. Optimizing texture and mechanical properties: the impact of pH-modulated metal-phenolic networks on soy protein isolate gels. Food Hydrocoll 153, 110011 (2024).

    Google Scholar 

  69. Yang, S. et al. Insight into succinylated modified soy protein isolate-sodium alginate emulsion gels: Structural properties, interactions and quercetin release behavior. Food Hydrocoll 151, 109857 (2024).

    Google Scholar 

  70. Chen, Z. et al. Effect of freezing on physicochemical properties and microstructure of soy protein gels. LWT 208, 116661 (2024).

    Google Scholar 

  71. Ban, Q. et al. Effect of non-covalently bound alkaline amino acids on the structural characterization, microstructure, and rheological properties of whey protein emulsion gel. LWT 209, 116809 (2024).

    Google Scholar 

  72. Lu, F., Chi, Y. & Chi, Y. Effect of fat replacement in high internal phase emulsions constructed by high temperature saccharification of grafted proteins on gel properties and flavor profiles of sausages. Poult. Sci. 103, 104358 (2024).

    Google Scholar 

  73. Feng, J. et al. Interpenetrating network hydrogels loaded with nanostructured lipid carriers for curcumin delivery: Impact of dual crosslinking with genipin and calcium ions. Food Res. Int. 202, 115704 (2025).

    Google Scholar 

  74. Liu, L. et al. The effect of corn starch on the mechanism and printing characteristics of Sa-son seed gum-whey protein. Food Biosci 67, 106323 (2025).

    Google Scholar 

  75. Wang, J. et al. Rheological and mechanical behavior of soy protein-polysaccharide composite paste for extrusion-based 3D food printing: Effects of type and concentration of polysaccharides. Food Hydrocoll 153, 109942 (2024).

    Google Scholar 

  76. Lin, X., Shi, J., Meng, G. & Yu, C. Sodium alginate hydrogel carrier with calcium carbonate as calcium source for ibuprofen release. Macromol. Chem. Phys. 224, 2300195 (2023).

    Google Scholar 

  77. Sofiah Roslan, H. et al. Characteristics of hybrid alginate/soy protein isolate wound dressing aerogels dried by supercritical carbon dioxide. Mater. Today Proc. 407 (2023).

  78. Hu, X. & Meng, Z. Plant-based yolk alternatives based on alginate-chitosan and gellan gum-chitosan double hydrogel network using reverse spherification technology. Food Chem 476, 143409 (2025).

    Google Scholar 

  79. Zhong, M. et al. The effect of salt ion on the freeze-thaw stability and digestibility of the lipophilic protein-hydroxypropyl methylcellulose emulsion. LWT 151, 112202 (2021).

    Google Scholar 

  80. Xing, H., Liu, X., Hu, Y., Hu, K. & Chen, J. Effect of Lycium barbarum polysaccharides on heat-induced gelation of soy protein isolate. Food Hydrocoll 147, 109323 (2024).

    Google Scholar 

  81. Sun, A. et al. Pickering emulsion gel based on WPI/SPI composite protein-sodium alginate: encapsulation of nervonic acid and its application in processed cheese. Food Biosci 67, 106341 (2025).

    Google Scholar 

  82. Li, M. et al. Exploring the gelation potentials of chicken heart batter: from by-product to product. Food Chem 468, 142316 (2025).

    Google Scholar 

  83. Tong, J. et al. Influence mechanisms of different setting time at low temperature on the gel quality and protein structure of Solenocera crassicornis surimi. Food Biosci 51, 102344 (2023).

    Google Scholar 

  84. Zhang, H. et al. Investigation of the formation mechanism and β-carotene encapsulation stability of emulsion gels based on egg yolk granules and sodium alginate. Food Chem 400, 134032 (2023).

    Google Scholar 

  85. Yao, W. et al. Underlying the effect of soybean oil concentration on the gelling properties of myofibrillar protein-based emulsion gels: perspective on interfacial adsorption, rheological properties and protein conformation. Food Hydrocoll 162, 110935 (2025).

    Google Scholar 

  86. Wang, H., Sun, L., Sun, X., Tian, H. & Yu, D. Effects of moderate electric fields on the structural and gelling properties of soybean protein isolate gel induced by glucono-δ-lactone. Innov. Food Sci. Emerg. Technol. 95, 103716 (2024).

    Google Scholar 

  87. Cao, J. et al. Soy protein isolate/sodium alginate microparticles under different pH conditions: formation mechanism and physicochemical properties. Foods 11, 790 (2022).

    Google Scholar 

  88. Su, C., Li, D., Wang, L. & Wang, Y. Development of corn starch-sodium alginate emulsion gels as animal fat substitute: Effect of oil concentration. Food Hydrocoll 157, 110439 (2024).

    Google Scholar 

  89. Su, C., Li, D., Sun, W., Wang, L. & Wang, Y. Green, tough, and heat-resistant: a GDL-induced strategy for starch-alginate hydrogels. Food Chem 449, 139188 (2024).

    Google Scholar 

  90. Xia, W. et al. Acid-induced gels from soy and whey protein thermally-induced mixed aggregates: rheology and microstructure. Food Hydrocoll 125, 107376 (2022).

    Google Scholar 

  91. Cao, L., Lu, W., Mata, A., Nishinari, K. & Fang, Y. Egg-box model-based gelation of alginate and pectin: a review. Carbohydr. Polym. 242, 116389 (2020).

    Google Scholar 

  92. Wang, Y. et al. Fabrication of a double-network high internal phase emulsion gel stabilized by bacterial cellulose nanofibrils: Enhancement of heat stability and 3D printing. Food Hydrocoll 143, 108872 (2023).

    Google Scholar 

  93. Shuai, X. et al. Macadamia oil-based oleogels as cocoa butter alternatives: physical properties, oxidative stability, lipolysis, and application. Food Res. Int. 172, 113098 (2023).

    Google Scholar 

  94. Jackman, P., Sun, D.-W. & Allen, P. Automatic segmentation of beef longissimus dorsi muscle and marbling by an adaptable algorithm. Meat Sci 83, 187–194 (2009).

    Google Scholar 

  95. Uttaro, B., Zawadski, S., Larsen, I. & Juárez, M. An image analysis approach to identification and measurement of marbling in the intact pork loin. Meat Sci 179, 108549 (2021).

    Google Scholar 

  96. Liu, S. et al. Investigation into the fabrication of plant-based simulant connective tissue utilizing algae polysaccharide-derived hydrogel. Int. J. Biol. Macromol. 273, 133126 (2024).

    Google Scholar 

  97. Ullah, I. et al. Influence of okara dietary fiber with varying particle sizes on gelling properties, water state and microstructure of tofu gel. Food Hydrocoll 89, 512–522 (2019).

    Google Scholar 

  98. Ran, J. et al. Gel properties of mung bean protein-sodium caseinate hybrid yogurt: physicochemical properties, microstructure, and intermolecular interactions. Food Chem. X 24, 101977 (2024).

    Google Scholar 

  99. Feng, Y. et al. Effects of transglutaminase coupled with κ-carrageenan on the rheological behaviours, gel properties and microstructures of meat batters. Food Hydrocoll 146, 109265 (2024).

    Google Scholar 

  100. Basak, S. & Singhal, R. S. Composite hydrogels fabricated from konjac glucomannan and gellan gum: Rheological characterization and their potential application in sustainable agriculture. Carbohydr. Polym. 336, 122091 (2024).

    Google Scholar 

  101. Lan, Y.-C. & Lai, L.-S. Pasting and rheological properties of water caltrop starch as affected by the addition of konjac glucomannan, guar gum and xanthan gum. Food Hydrocoll 136, 108245 (2023).

    Google Scholar 

  102. Huang, L. et al. Transglutaminase treatment and pH shifting to manipulate physicochemical properties and formation mechanism of cubic fat substitutes. Food Chem. X 16, 100508 (2022).

    Google Scholar 

  103. Lin, T., Liu, S., Ji, Z., Shao, H. & Hao, J. Vitrified bond diamond grinding wheel prepared by gel-casting with 3D printing molds. Diam. Relat. Mater. 108, 107917 (2020).

    Google Scholar 

  104. Park, J. W., Lee, S. H., Kim, H. W. & Park, H. J. Application of extrusion-based 3D food printing to regulate marbling patterns of restructured beef steak. Meat Sci 202, 109203 (2023).

    Google Scholar 

Download references