References
-
Keswani, C. et al. Auxins of microbial origin and their use in agriculture. Appl. Microbiol. Biotechnol. 104 (20), 8549–8565 (2020).
-
Li, L. & Kaderbek, T. CCS52A1/2 orchestrate hypocotyl endoreplication and elongation via PKN1/PKN2 pathways in Arabidopsis Thaliana. Trends Plant. Biology. 2, 1–14 (2025).
-
Khan, M. A., Khan, W., Anwar, S. & Azeem, M. A. Legacy effects in heathlands: decoupling above-and belowground responses to subsequent drought events. Trends Plant. Biology. 2, 1–3 (2025).
-
Abdelhamid, S. A., Abo Elsoud, M. M., El-Baz, A., Nofal, A. M. & El-Banna, H. Y. Optimisation of Indole acetic acid production by Neopestalotiopsis aotearoa endophyte isolated from Thymus vulgaris and its impact on seed germination of Ocimum basilicum. BMC Biotechnol. 24 (1), 46 (2024).
-
Qin, Q. et al. Auxin response factors (ARFs) differentially regulate rice antiviral immune response against rice Dwarf virus. PLoS Pathog. 16 (12), e1009118 (2020).
-
Alloun, W. et al. Waste valorization as low-cost media engineering for auxin production from the newly isolated Streptomyces rubrogriseus AW22: model development. Chemosphere 326, 138394 (2023).
-
Gravel, V., Antoun, H. & Tweddell, R. J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of Indole acetic acid (IAA). Soil Biol. Biochem. 39 (8), 1968–1977 (2007).
-
Li, Y. et al. Investigation of the oxidation mechanism of coal carboxyl functional groups using naphthalene acetic acid as a model compound. J. Phys. Chem. Solids. 208 (1), 113090. (2025).
-
Sharma, A., Gupta, G. K., Chhabra, D., Pandey, P. & Shukla, P. Enhanced indole-3-acetic acid production by Enterobacter hormaechei APSB3 through heuristic artificial neural network and particle swarm optimisation. Environ. Sustain. 8, 289–304 (2025).
-
Oyinlola, K. A., Ogundola, R. O. & Ogunleye, G. E. Biosynthesis, production optimization and antifungal property of indole-3-acetic acid from Pseudomonas aeruginosa ROO1S. International congresses of Turkish science and technology publishing. 351. (2025).
-
Devi, T. S. et al. Optimized production and characterization of auxin by Bacillus amyloliquefaciens (TSP11) for plant growth promotion. J. Basic Microbiol. 65 (5), e70010 (2025).
-
Maor, R., Haskin, S., Levi-Kedmi, H. & Sharon, A. In planta production of indole-3-acetic acid by Colletotrichum gloeosporioides f. sp. aeschynomene. Appl. Environ. Microbiol. 70 (3), 1852–1854 (2004).
-
Yurekli, F., Geckil, H. & Topcuoglu, F. The synthesis of indole-3-acetic acid by the industrially important white-rot fungus Lentinus carcajou under different culture conditions. Mycol. Res. 107 (3), 305–309 (2003).
-
Xin, G., Glawe, D. & Doty, S. L. Characterization of three endophytic, indole-3-acetic acid-producing yeasts occurring in Populus trees. Mycol. Res. 113 (9), 973–980 (2009).
-
Apine, O. & Jadhav, J. Optimization of medium for indole-3‐acetic acid production using Pantoea agglomerans strain PVM. J. Appl. Microbiol. 110 (5), 1235–1244 (2011).
-
Elsoud, M. M. A., Hasan, S. F. & Elhateir, M. M. Optimization of Indole-3-acetic acid production by Bacillus velezensis isolated from pyrus rhizosphere and its effect on plant growth. Biocatal. Agric. Biotechnol. 50, 102714 (2023).
-
Jahn, L., Hofmann, U. & Ludwig-Müller, J. Indole-3-acetic acid is synthesized by the endophyte Cyanodermella asteris via a tryptophan-dependent and-independent way and mediates the interaction with a non-host plant. Int. J. Mol. Sci. 22 (5), 2651 (2021).
-
Visconti, D. et al. Can Trichoderma-based biostimulants optimize N use efficiency and stimulate growth of leafy vegetables in greenhouse intensive cropping systems? Agronomy 10 (1), 121 (2020).
-
Jin, X. et al. Rhizosphere growth-promoting bacteria enhance oat growth by improving microbial stability and soil organic matter in the saline soil of the Qaidam basin. Plants 14 (13), 1926 (2025).
-
Sridhar, D. et al. The soil Microbiome enhances Sesame growth and oil composition, and soil nutrients under saline conditions. Sci. Rep. 15 (1), 29432 (2025).
-
Nasraoui, A. H., Heikal, Y. M., Ali, M., Abidi, C. & Ammari, Y. Assessment of Paulownia tomentosa steud. Regeneration capacity through root cutting Diameters, growth hormone doses and soil types. Int. J. Plant. Biology. 16 (3), 73 (2025).
-
Boondaeng, A. et al. Biological conversion of agricultural wastes into indole-3-acetic acid by Streptomyces lavenduligriseus BS50-1 using a response surface methodology (RSM). ACS Omega. 8 (43), 40433–40441 (2023).
-
Todorović, I., Moënne-Loccoz, Y., Raičević, V., Jovičić-Petrović, J. & Muller, D. Microbial diversity in soils suppressive to fusarium diseases. Front. Plant Sci. 14, 1228749 (2023).
-
Hossain, M. M. et al. Biological management of Soil-Borne pathogens through tripartite rhizosphere interactions with plant Growth-Promoting fungi. Appl. Microbiol. 5 (4), 123 (2025).
-
Cheng, S. et al. Plant growth-promoting ability of mycorrhizal Fusarium strain KB-3 enhanced by its IAA producing endohyphal bacterium, Klebsiella aerogenes. Front. Microbiol. 13, 855399 (2022).
-
Vrabka, J. et al. Production and role of hormones during interaction of fusarium species with maize (Zea Mays L.) seedlings. Front. Plant Sci. 9, 1936 (2019).
-
Booth, C. Methods in Microbiology (Academic, 1971).
-
Bose, A., Shah, D. & Keharia, H. Production of indole-3-acetic-acid (IAA) by the white rot fungus Pleurotus ostreatus under submerged condition of Jatropha seedcake. Mycology 4 (2), 103–111 (2013).
-
Ahmad, F., Ahmad, I. & KHAN, M. S. Indole acetic acid production by the Indigenous isolates of azotobacter and fluorescent Pseudomonas in the presence and absence of Tryptophan. Turkish J. Biology. 29 (1), 29–34 (2005).
-
Ehmann, A. The Van Urk-Salkowski reagent—a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of Indole derivatives. J. Chromatogr. A. 132 (2), 267–276 (1977).
-
Jetiyanon, K. Multiple mechanisms of Enterobacter asburiae strain RS83 for plant growth enhancement. Songklanakarin J. Sci. Technol. ;37(1) 29-36 (2015).
-
Chatterjee, S., Dhole, A., Krishnan, A. A. & Banerjee, K. Mycotoxin monitoring, regulation and analysis in india: a success story. Foods 12 (4), 705 (2023).
-
Booth, C. Fusarium. Laboratory guide to the identification of the major species. (1977).
-
Ali, Z. Computational Docking Studies of Phenyl Acetic Acid Derivatives with Biological Targets, DNA, Protein and Enzyme (2024).
-
Sharma, M. et al. Detection and identification of bacteria intimately associated with fungi of the order sebacinales. Cell. Microbiol. 10 (11), 2235–2246 (2008).
-
De Tempe, J. The blotter method for seed health testing. (1963).
-
Teale, W. D., Paponov, I. A. & Palme, K. Auxin in action: signalling, transport and the control of plant growth and development. Nat. Rev. Mol. Cell Biol. 7 (11), 847–859 (2006).
-
Abdul-Baki, A. A. & Anderson, J. D. Vigor determination in soybean seed by multiple criteria 1. Crop Sci. 13 (6), 630–633 (1973).
-
Duncan, D. B. Multiple range and multiple F tests. Biometrics 11 (1), 1–42 (1955).
-
Wei, X. et al. The alterations of the synthetic pathway and metabolic flux of auxin indole-3-acetic acid (IAA) govern thermotolerance in Lentinula edodes mycelia subjected to heat stress. BioRxiv 2025 (04), 09–648085 (2025).
-
Etesami, H. & Glick, B. R. Bacterial indole-3-acetic acid: A key regulator for plant growth, plant-microbe interactions, and agricultural adaptive resilience. Microbiol. Res. 281, 127602 (2024).
-
Kumar, N. V., Rajam, K. S. & Rani, M. E. Plant growth promotion efficacy of Indole acetic acid (IAA) produced by a Mangrove associated fungi-Trichoderma viride VKF3. Int. J. Curr. Microbiol. Appl. Sci. 6 (11), 2692–2701 (2017).
-
Junaidi, A. R. & Bolhassan, M. H. Screening of Indole-3-Acetic acid (IAA) productions by endophytic fusarium oxysporum isolated from phyllanthus Niruri. Borneo J. Resource Sci. Technol. 7 (1), 56–59 (2017).
-
Gusmiaty, M., Restu, A. & Payangan, R. Production of IAA (Indole Acetic Acid) of the rhizosphere fungus in the Suren community forest stand. In: IOP Conference Series: Earth and Environmental Science. vol. 343: IOP Publishing; : 012058. (2019).
-
Hasan, H. Gibberellin and auxin-indole production by plant root-fungi and their biosynthesis under salinity-calcium interaction. Acta Microbiol. Immunol. Hung. 49 (1), 105–118 (2002).
-
Ismaiel, A. A. & Papenbrock, J. Mycotoxins: producing fungi and mechanisms of phytotoxicity. Agriculture 5 (3), 492–537 (2015).
-
Perincherry, L., Lalak-Kańczugowska, J. & Stępień, Ł. Fusarium-produced Mycotoxins in plant-pathogen interactions. Toxins 11 (11), 664 (2019).
-
Jangpangi, D., Patni, B., Chandola, V. & Chandra, S. Medicinal plants in a changing climate: Understanding the links between environmental stress and secondary metabolite synthesis. Front. Plant Sci. 16, 1587337 (2025).
-
Anwar, M. F. et al. Unraveling the role of Auxin-Producing plant growth promoting rhizobacteria by modulating L-Tryptophan on yield and growth components of maize. J. Microbiol. Sci. 4 (2), 105–114 (2025).
-
Harikrishnan, H., Shanmugaiah, V. & Balasubramanian, N. Optimization for production of Indole acetic acid (IAA) by plant growth promoting Streptomyces sp VSMGT1014 isolated from rice rhizosphere. Int. J. Curr. Microbiol. Appl. Sci. 3 (8), 158–171 (2014).
-
Chutima, R. & Lumyong, S. Production of indole-3-acetic acid by Thai native orchid-associated fungi. Symbiosis 56 (1), 35–44 (2012).
-
Kumla, J., Suwannarach, N., Bussaban, B., Matsui, K. & Lumyong, S. Indole-3-acetic acid production, solubilization of insoluble metal minerals and metal tolerance of some sclerodermatoid fungi collected from Northern Thailand. Ann. Microbiol. 64 (2), 707–720 (2014).
-
BİLKAY, I. S., Karakoç, Ş. & Aksöz, N. Indole-3-acetic acid and gibberellic acid production in Aspergillus niger. Turkish J. Biology. 34 (3), 313–318 (2010).
-
Chaiharn, M. & Lumyong, S. Screening and optimization of indole-3-acetic acid production and phosphate solubilization from rhizobacteria aimed at improving plant growth. Curr. Microbiol. 62 (1), 173–181 (2011).
-
Datta, C. & Basu, P. Indole acetic acid production by a rhizobium species from root nodules of a leguminous shrub, Cajanus Cajan. Microbiol. Res. 155 (2), 123–127 (2000).
-
Bunsangiam, S., Thongpae, N., Limtong, S. & Srisuk, N. Large scale production of indole-3-acetic acid and evaluation of the inhibitory effect of indole-3-acetic acid on weed growth. Sci. Rep. 11 (1), 13094 (2021).
-
Lustikaiswi, D. K., Yuliani, S., Annura, R. & Rahmadani, E. Tryptophan in banana peel (Musa paradisiaca) as an anti-dementia alternative treatment: a narrative review. JKKI: Jurnal Kedokteran Dan Kesehatan Indonesia. :175 – 81. (2021).
-
Elsoud, M. M. A., Elhateir, M. M., Hasan, S. F., Sidkey, N. M. & Abdelhamid, S. A. Enhanced low-cost optimization strategies for antimicrobial rhamnolipid production by Pseudomonas aeruginosa PAO1. Bioresource Technol. Rep. 27, 101935 (2024).
-
Prajapati, S., Pandey, L. M. & Tiwari, P. Exploring Agro-Industrial Waste. In: Proceedings of 1st International Conference on Petroleum, Hydrogen and Decarbonization: ICPHD 2023. Springer Nature; : 67. (2025).
-
Ghoreishi, G., Barrena, R. & Font, X. Using green waste as substrate to produce biostimulant and biopesticide products through solid-state fermentation. Waste Manage. 159, 84–92 (2023).
-
Fonseca, S., Radhakrishnan, D., Prasad, K. & Chini, A. Fungal production and manipulation of plant hormones. Curr. Med. Chem. 25 (2), 253–267 (2018).
-
Malik, D. K. & Sindhu, S. S. Production of Indole acetic acid by Pseudomonas sp.: effect of coinoculation with mesorhizobium sp. Cicer on nodulation and plant growth of Chickpea (Cicer arietinum). Physiol. Mol. Biology Plants. 17 (1), 25–32 (2011).
