Molecular identification, isolation and functional characterization of a glutathione S-transferase gene CsGST in saffron (Crocus sativus L.)

molecular-identification,-isolation-and-functional-characterization-of-a-glutathione-s-transferase-gene-csgst-in-saffron-(crocus-sativus-l.)
Molecular identification, isolation and functional characterization of a glutathione S-transferase gene CsGST in saffron (Crocus sativus L.)

References

  1. Tsimidou, M. Z. On the importance of the starting material choice and analytical procedures adopted when developing a strategy for the nanoencapsulation of saffron (Crocus sativus L.) bioactive antioxidants. Antioxidants (Basel Switzerland) 12(2), 220 (2023).

  2. Mykhailenko, O., Kovalyov, V., Goryacha, O., Ivanauskas, L. & Georgiyants, V. Biologically active compounds and Pharmacological activities of species of the genus crocus: A review. Phytochemistry 162, 56–89 (2019).

    Google Scholar 

  3. Arzi, L. & Hoshyar, R. Saffron anti-metastatic properties, ancient spice novel application. Crit. Rev. Food Sci. Nutr. 62(14), 3939–3950 (2022).

    Google Scholar 

  4. Demurtas, O. C. et al. Candidate enzymes for saffron Crocin biosynthesis are localized in multiple cellular compartments. Plant Physiol. 177(3), 990–1006 (2018).

    Google Scholar 

  5. Cerdá-Bernad, D. & Frutos, M. J. Saffron floral By-Products as novel sustainable vegan ingredients for the functional and nutritional improvement of traditional wheat and spelt breads. Foods (Basel Switzerland) 12(12), 2380 (2023).

  6. Agarwal, N., Kolba, N., Jung, Y., Cheng, J. & Tako, E. Saffron (Crocus sativus L.) flower water extract disrupts the cecal Microbiome, brush border membrane Functionality, and morphology in vivo (Gallus gallus). Nutrients 14(1), 220 (2022).

  7. Basílio, N. & Pina, F. Chemistry and photochemistry of anthocyanins and related compounds: A thermodynamic and kinetic approach. Molecules (Basel Switzerland) 21(11), 1502 (2016).

  8. Moratalla-López, N., Bagur, M. J., Lorenzo, C., Salinas, M. & Alonso, G. L. Bioactivity and bioavailability of the major metabolites of crocus sativus L. Flower. Molecules (Basel Switzerland). 24, 15 (2019).

    Google Scholar 

  9. Dhar, M. K., Sharma, M., Bhat, A., Chrungoo, N. K. & Kaul, S. Functional genomics of apocarotenoids in saffron: insights from chemistry, molecular biology and therapeutic applications. Brief. Funct. Genomics. 16 (6), 336–347 (2017).

    Google Scholar 

  10. Lu, Z. et al. Plant anthocyanins: Classification, biosynthesis, regulation, bioactivity, and health benefits. Plant. Physiol. Biochemistry: PPB. 217, 109268 (2024).

    Google Scholar 

  11. Jia, H. et al. HDAC19 recruits ERF4 to the MYB5a promoter and diminishes anthocyanin accumulation during grape ripening. Plant. Journal: cell. Mol. Biology. 113 (1), 127–144 (2023).

    Google Scholar 

  12. Zhao, Y. W., Wang, C. K., Huang, X. Y. & Hu, D. G. Genome-Wide analysis of the glutathione S-Transferase (GST) genes and functional identification of MdGSTU12 reveals the involvement in the regulation of anthocyanin accumulation in Apple. Genes 12, 11 (2021).

    Google Scholar 

  13. Sappl, P. G. et al. The Arabidopsis glutathione transferase gene family displays complex stress regulation and co-silencing multiple genes results in altered metabolic sensitivity to oxidative stress. Plant. Journal: cell. Mol. Biology. 58 (1), 53–68 (2009).

    Google Scholar 

  14. Zhu, J. H. et al. Transcriptome-wide identification and expression analysis of glutathione S-transferase genes involved in flavonoids accumulation in Dracaena Cambodiana. Plant. Physiol. Biochemistry: PPB. 104, 304–311 (2016).

    Google Scholar 

  15. Van Der Kraak, L. et al. 5-Fluorouracil upregulates cell surface B7-H1 (PD-L1) expression in Gastrointestinal cancers. J. Immunother. Cancer. 4, 65 (2016).

    Google Scholar 

  16. Licciardello, C. et al. Characterization of the glutathione S-transferase gene family through ESTs and expression analyses within common and pigmented cultivars of citrus sinensis (L.) Osbeck. BMC Plant Biol. 14, 39 (2014).

    Google Scholar 

  17. Islam, S., Rahman, I. A., Islam, T. & Ghosh, A. Genome-wide identification and expression analysis of glutathione S-transferase gene family in tomato: gaining an insight to their physiological and stress-specific roles. PloS One 12(11), e0187504 (2017).

  18. Yuan, S. et al. Genome-Wide identification and expression analysis of GST genes during Light-Induced anthocyanin biosynthesis in Mango (Mangifera indica L). Plants (Basel Switzerland). 13, 19 (2024).

    Google Scholar 

  19. Kou, M. et al. A novel glutathione S-transferase gene from sweetpotato, IbGSTF4, is involved in anthocyanin sequestration. Plant. Physiol. Biochemistry: PPB. 135, 395–403 (2019).

    Google Scholar 

  20. Kitamura, S., Shikazono, N. & Tanaka, A. TRANSPARENT TESTA 19 is involved in the accumulation of both anthocyanins and proanthocyanidins in Arabidopsis. Plant. Journal: cell. Mol. Biology. 37 (1), 104–114 (2004).

    Google Scholar 

  21. Conn, S., Curtin, C., Bézier, A., Franco, C. & Zhang, W. Purification, molecular cloning, and characterization of glutathione S-transferases (GSTs) from pigmented vitis vinifera L. cell suspension cultures as putative anthocyanin transport proteins. J. Exp. Bot. 59 (13), 3621–3634 (2008).

    Google Scholar 

  22. Kitamura, S., Akita, Y., Ishizaka, H., Narumi, I. & Tanaka, A. Molecular characterization of an anthocyanin-related glutathione S-transferase gene in cyclamen. J. Plant Physiol. 169 (6), 636–642 (2012).

    Google Scholar 

  23. Cheng, J. et al. A small indel mutation in an anthocyanin transporter causes variegated colouration of Peach flowers. J. Exp. Bot. 66 (22), 7227–7239 (2015).

    Google Scholar 

  24. Qian, X. et al. Single-molecule real-time transcript sequencing identified flowering regulatory genes in crocus sativus. BMC Genom. 20 (1), 857 (2019).

    Google Scholar 

  25. Gallego Romero, I., Pai, A. A., Tung, J. & Gilad, Y. RNA-seq: impact of RNA degradation on transcript quantification. BMC Biol. 12, 42 (2014).

    Google Scholar 

  26. King, D. J. et al. A Systematic Evaluation of High-Throughput Sequencing Approaches to Identify Low-Frequency Single Nucleotide Variants in Viral Populations. Viruse, 12(10). (2020).

  27. Green, M. R. & Sambrook, J. Rapid Amplification of Sequences from the 3’ Ends of mRNAs: 3’-RACE. Cold Spring Harbor protocols, 2019(5). (2019).

  28. Marchler-Bauer, A. et al. CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucleic Acids Res. 45 (D1), D200–d203 (2017).

    Google Scholar 

  29. Wang, J. et al. The conserved domain database in 2023. Nucleic Acids Res. 51 (D1), D384–d388 (2023).

    Google Scholar 

  30. Madeira, F. et al. The EMBL-EBI search and sequence analysis tools apis in 2019. Nucleic Acids Res. 47 (W1), W636–w641 (2019).

    Google Scholar 

  31. Tamura, K., Stecher, G. & Kumar, S. MEGA11: molecular evolutionary genetics analysis version 11. Mol. Biol. Evol. 38 (7), 3022–3027 (2021).

    Google Scholar 

  32. Udvardi, M. K., Czechowski, T. & Scheible, W. R. Eleven golden rules of quantitative RT-PCR. Plant. cell. 20 (7), 1736–1737 (2008).

    Google Scholar 

  33. Rao, X., Huang, X., Zhou, Z. & Lin, X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostatistics Bioinf. Biomathematics. 3 (3), 71–85 (2013).

    Google Scholar 

  34. Allocati, N., Masulli, M., Di Ilio, C. & Federici, L. Glutathione transferases: substrates, inihibitors and pro-drugs in cancer and neurodegenerative diseases. Oncogenesis 7 (1), 8 (2018).

    Google Scholar 

  35. Lee, J., Durst, R. W. & Wrolstad, R. E. Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: collaborative study. J. AOAC Int. 88 (5), 1269–1278 (2005).

    Google Scholar 

  36. Marrs, K. A., Alfenito, M. R., Lloyd, A. M. & Walbot, V. A glutathione S-transferase involved in vacuolar transfer encoded by the maize gene Bronze-2. Nature 375 (6530), 397–400 (1995).

    Google Scholar 

  37. Alfenito, M. R. et al. Functional complementation of anthocyanin sequestration in the vacuole by widely divergent glutathione S-transferases. Plant. cell. 10 (7), 1135–1149 (1998).

    Google Scholar 

  38. Kanamori, A. et al. Antioxidative and antiglycative stress activities of selenoglutathione diselenide. Pharmaceuticals (Basel Switzerland). 17, 8 (2024).

    Google Scholar 

  39. Taulavuori, E., Tahkokorpi, M., Taulavuori, K. & Laine, K. Anthocyanins and glutathione S-transferase activities in response to low temperature and Frost hardening in vaccinium myrtillus (L). J. Plant Physiol. 161 (8), 903–911 (2004).

    Google Scholar 

  40. Zachariah, V. T., Walsh-Sayles, N. & Singh, B. R. Isolation, purification, and characterization of glutathione S-transferase from oat (Avena sativa) seedlings. J. Protein Chem. 19 (6), 425–430 (2000).

    Google Scholar 

  41. Li, B. et al. Genomic analysis of the glutathione S-Transferase family in Pear (Pyrus communis) and functional identification of PcGST57 in anthocyanin accumulation. International J. Mol. Sciences 23(2), 746 (2022).

  42. Sylvestre-Gonon, E. et al. Functional, structural and biochemical features of plant Serinyl-Glutathione transferases. Front. Plant Sci. 10, 608 (2019).

    Google Scholar 

  43. Sun, L., Yin, J., Du, H., Liu, P. & Cao, C. Characterisation of GST genes from the hyphantria cunea and their response to the oxidative stress caused by the infection of hyphantria cunea nucleopolyhedrovirus (HcNPV). Pestic. Biochem. Physiol. 163, 254–262 (2020).

    Google Scholar 

  44. Gullner, G., Komives, T., Király, L. & Schröder, P. Glutathione S-Transferase enzymes in Plant-Pathogen interactions. Front. Plant Sci. 9, 1836 (2018).

    Google Scholar 

  45. Kumar, S., Trivedi, P. K. & Glutathione, S-T. Role in combating abiotic stresses including arsenic detoxification in plants. Front. Plant Sci. 9, 751 (2018).

    Google Scholar 

  46. Sawant, A. V., Srivastava, S., Prassanawar, S. S., Bhattacharyya, B. & Panda, D. Crocin, a carotenoid, suppresses spindle microtubule dynamics and activates the mitotic checkpoint by binding to tubulin. Biochem. Pharmacol. 163, 32–45 (2019).

    Google Scholar 

  47. Yan, N. et al. Crocin promotes ferroptosis in gastric cancer via the Nrf2/GGTLC2 pathway. Front. Pharmacol. 16, 1527481 (2025).

    Google Scholar 

  48. Zhou, G., Li, L., Lu, J., Li, J. & Yao, C. Flower cultivation regimes affect apocarotenoid accumulation and gene expression during the development of saffron stigma. Hortic. Environ. Biotechnol. 61, 473–484 (2020).

    Google Scholar 

Download references