Morphological and genetic diversity of breeding clones derived from Hippeastrum × chmielii

morphological-and-genetic-diversity-of-breeding-clones-derived-from-hippeastrum × chmielii
Morphological and genetic diversity of breeding clones derived from Hippeastrum × chmielii

References

  1. Bryan, J. E. Bulbs 2nd edn. (Timber Press, 2002).

    Google Scholar 

  2. Ilczuk, A. Chmiel’s hippeastrum—An interesting ornamental plant. Rośliny Ozdobne 4, 25–28 (2015).

    Google Scholar 

  3. Okubo, H. Hippeastrum (Amaryllis). In The physiology of flower bulbs (eds. De Hertogh, A. & Le Nard, M.) 321–334 (Elsevier, The Netherlands, 1993).

  4. Hubner, S. International statistics – flowers and plants (Centre for Business Management in Horticulture and Applied Research, International Association of Horticultural Producers (AIPH) in association with Union Fleurs, Hannover, Germany, 2014), p. 190.

  5. Silva, T. D. J. A. Ornamental chrysanthemums: Improvement by biotechnology. Plant Cell Tissue Organ Cult. 79, 1–18. https://doi.org/10.1023/B:TICU.0000049444.67329.b9 (2004).

    Google Scholar 

  6. Marasek-Ciołakowska, A., Sochacki, D. & Marciniak, P. Breeding aspects of selected ornamental bulbous crops. Agronomy 11, 1709. https://doi.org/10.3390/agronomy11091709 (2021).

    Google Scholar 

  7. Moerman, A., Bodegom, S. & van Scheepen, J. Nieuwe cultivargroepen voor Hippeastrumcultivars. BloembollenVisie 111, 24–26 (2007).

    Google Scholar 

  8. Traub, H. P. The Amaryllis Manual 233–235 (Macmillan, 1958).

    Google Scholar 

  9. Van Scheepen, J., Moerman, A. & Bodegom, S. Hippeastrum cultivars zoals die in teelt en handel zijn. BloembollenVisie 125, 29–30 (2007).

    Google Scholar 

  10. Bodegom, S.; van Scheepen, J. KAVB Registraties 2018. In Bijlage BloembollenVisie (Koninklijke Algemeene Vereeniging voor Bloembollencultuur, Hillegom, The Netherlands, 2019).

  11. Bodegom, S.R.; van Scheepen, J.; Bouman, R. KAVB Registraties 2019. In Bijlage BloembollenVisie (Koninklijke Algemeene Vereeniging voor Bloembollencultuur, Hillegom, The Netherlands, 2020).

  12. Bodegom, S.R.; Bouman, R.; van Scheepen, J. KAVB Registraties 2020. In Bijlage BloembollenVisie (Koninklijke Algemeene Vereeniging voor Bloembollencultuur, Hillegom, The Netherlands, 2021).

  13. Bodegom, S.R.; Bouman, R.; van Oers, S. KAVB Registraties 2021. In Bijlage BloembollenVisie (Koninklijke Algemeene Vereeniging voor Bloembollencultuur, Hillegom, The Netherlands, 2022).

  14. Bodegom, S.R.; Bouman, R.; van Oers, S. KAVB Registraties 2022. In Bijlage BloembollenVisie (Koninklijke Algemeene Vereeniging voor Bloembollencultuur, Hillegom, The Netherlands, 2023).

  15. Bodegom, S.R.; van Oers, S. KAVB Registraties 2023. In Bijlage BloembollenVisie (Koninklijke Algemeene Vereeniging voor Bloembollencultuur, Hillegom, The Netherlands, 2024).

  16. Chmiel, H., Ilczuk, A. & Łukaszewska, A. All-round merits of new Hippeastrum hybrid. FlowerTech 5, 31–33 (2002).

    Google Scholar 

  17. Marciniak, P., Jędrzejuk, A. & Sochacki, D. Evaluation of the possibility of obtaining viable seeds from the cross-breeding Hippeastrum × chmielii Chm. with selected cultivars of Hippeastrum hybridum Hort. Folia Hortic. 33, 185–194. https://doi.org/10.2478/fhort-2021-0014 (2021).

    Google Scholar 

  18. UPOV. Guidelines for the Conduct of Tests for Distinctness, Uniformity and Stability: Amaryllis (Hippeastrum Herb.); TG/181/4; International Union for the Protection of New Varieties of Plants: Geneva, Switzerland, 2024; p. 35. https://doi.org/10.34667/tind.57666

  19. Hetherington, A. M. & Woodward, F. I. The role of stomata in sensing and driving environmental change. Nature 424, 901–908. https://doi.org/10.1038/nature01843 (2003).

    Google Scholar 

  20. Buckley, T. N. The control of stomata by water balance. New Phytol. 168, 275–292. https://doi.org/10.1111/j.1469-8137.2005.01543.x (2005).

    Google Scholar 

  21. Clark, J. W. et al. The origin and evolution of stomata. Curr. Biol. 32, R539–R553. https://doi.org/10.1016/j.cub.2022.04.040 (2022).

    Google Scholar 

  22. Fu, X. P., Ning, G. G., Gao, L. P. & Bao, M. Z. Genetic diversity of Dianthus accessions as assessed using two molecular marker systems (SRAPs and ISSRs) and morphological traits. Sci. Hortic. 117, 263–270. https://doi.org/10.1016/j.scienta.2008.04.001 (2008).

    Google Scholar 

  23. Shao, Q. S., Guo, Q. S., Deng, Y. M. & Guo, H. P. A comparative analysis of genetic diversity in medicinal Chrysanthemum morifolium based on morphology, ISSR and SRAP markers. Biochem. Syst. Ecol. 38, 1160–1169. https://doi.org/10.1016/j.bse.2010.11.002 (2010).

    Google Scholar 

  24. Krichen, L., Audergon, J.-M. & Trifi-Farah, N. Relative efficiency of morphological characters and molecular markers in the establishment of an apricot core collection. Hereditas 149, 163–172. https://doi.org/10.1111/j.1601-5223.2012.02245.x (2012).

    Google Scholar 

  25. Michalik, B. Zastosowanie kultur in vitro. W Hodowla roślin z elementami genetyki i biotechnologii (red. B. Michalik, Państwowe Wydawnictwo Rolnicze i Leśne, Warszawa, Polska, 2009; s. 298–299).

  26. Pautasso, M. Geographical genetics and the conservation of forest trees. Perspect. Plant Ecol. Evol. Syst. 11, 157–189. https://doi.org/10.1016/j.ppees.2009.01.003 (2009).

    Google Scholar 

  27. Mikowska, M., Świergosz-Kowalewska, R. & Śliwińska, E. Ocena różnorodności genetycznej przy pomocy markerów molekularnych – zastosowanie w ekotoksykologii. Wszechświat 113, 171–175 (2012).

    Google Scholar 

  28. Teixeira da Silva, J. A., Bolibok, H. & Rakoczy-Trojanowska, M. Molecular markers in micropropagation, tissue culture and in vitro plant research. Genes Genomes Genom. 1, 66–72 (2007).

    Google Scholar 

  29. Dziopa, A. Intensywność procesu transpiracji u roślin jednoliściennych (Monocotyledonae) i dwuliściennych (Dicotyledonae) na przykładzie cebuli zwyczajnej (Allium cepa L.) i fasoli zwyczajnej (Phaseolus vulgaris L.). Acta Juvenum 2, 11–16 (2017).

    Google Scholar 

  30. Harrison, E. L., Arce Cubas, L., Gray, J. E. & Hepworth, C. The influence of stomatal morphology and distribution on photosynthetic gas exchange. Plant J. 101, 768–779. https://doi.org/10.1111/tpj.14560 (2020).

    Google Scholar 

  31. Xiong, D. & Flexas, J. From one side to two sides: The effects of stomatal distribution on photosynthesis. New Phytol. 228, 1754–1766. https://doi.org/10.1111/nph.16801 (2020).

    Google Scholar 

  32. Jaccard, P. Nouvelles recherches sur la distribution florale. Bull. Soc. Vaud. Sci. Nat. 44, 223–270 (1908).

    Google Scholar 

  33. Chmiel, H. & Mynett, K. Ocena wartości dekoracyjnych i użytkowych nowego mieszańca międzygatunkowego Hippeastrum × chmielii. Zeszyty Problemowe Postępów Nauk Rolniczych 491, 91–101 (2003).

    Google Scholar 

  34. Shi, Z. et al. Assessment of differences in morphological and physiological leaf lodging characteristics between two cultivars of Hippeastrum rutilum. BMC Plant Biol. 20, 565. https://doi.org/10.1186/s12870-020-02784-8 (2020).

    Google Scholar 

  35. Azimi, M. H. Heterosis and genetic diversity in the crossings of Gladiolus cultivars Amsterdam and White Prosperity. Ornam. Hortic. 26, 177–189. https://doi.org/10.1590/2447-536X.v26i2.2095 (2020).

    Google Scholar 

  36. Azimi, M. H. & Alavijeh, M. K. Morphological traits and genetic parameters of Hippeastrum hybridum. Ornam. Hortic. 26, 579–590. https://doi.org/10.1590/2447-536X.v26i3.2153 (2020).

    Google Scholar 

  37. Nascimento, N. F. F. et al. Genetic variability of bulbs and flowers traits in Hippeastrum puniceum. Acta Hortic. 1000, 147–152. https://doi.org/10.17660/ActaHortic.2013.1000.17 (2013).

    Google Scholar 

  38. Pacific Bulb Society. Hippeastrum. https://www.pacificbulbsociety.org/pbswiki/index.php/Hippeastrum (accessed on 14 July 2024).

  39. Sposaro, M. M., Chimenti, C. A. & Hall, A. J. Root lodging in sunflower: Variations in anchorage strength across genotypes, soil types, crop population densities and crop developmental stages. Field Crops Res. 106, 179–186. https://doi.org/10.1016/j.fcr.2007.12.001 (2008).

    Google Scholar 

  40. Brickell, C. Wielka encyklopedia roślin; Muza: Warszawa, 2001; pp. 365, 369, 379, 510.

  41. Krause, J. Zwartnica. In Kwiaty cięte uprawiane pod osłonami; Jerzy, M., Ed.; Państwowe Wydawnictwo Rolnicze i Leśne: Warszawa, 2006; pp. 325–332.

  42. Meerow, A. W. The Florida series of hybrid Amaryllis: Five new Hippeastrum cultivars. HortScience 49, 1102–1107. https://doi.org/10.21273/HORTSCI.49.8.1102 (2014).

    Google Scholar 

  43. Arayakitcharoenchai, P. & Suwanthada, C. Some characteristics of pollen and stomata of diploid and tetraploid Hippeastrum. J. Agric. Res. Ext. 28, 1–10 (2011).

    Google Scholar 

  44. Zhou, C., Liu, Y. & Yang, C. Comparison of Amaryllidaceae leaf anatomical structure and microstructure. Hubei Agric. Sci. 51, 1603–1607 (2012).

    Google Scholar 

  45. Marques, G.G.L. Anatomia do escapo floral e da folha de espécies de Hippeastrum Herb. e Habranthus Herb. (Amaryllidaceae J. St.-Hil.) ocorrentes no Distrito Federal, Brasil. MSc Thesis, Universidade de Brasília, Brasília, 2015. http://repositorio.unb.br/handle/10482/19373.

  46. Abdoli, M., Moieni, A. & Naghdi Badi, H. Morphological, physiological, cytological and phytochemical studies in diploid and colchicine-induced tetraploid plants of Echinacea purpurea (L.). Acta Physiol. Plant. 35, 2075–2083. https://doi.org/10.1007/s11738-013-1242-9 (2013).

    Google Scholar 

  47. Haist, G. et al. Morphological, cariological, and phytochemical studies of diploid and autotetraploid Hippeastrum papilio plants. Planta 257, 51. https://doi.org/10.1007/s00425-023-04084-5 (2023).

    Google Scholar 

  48. Gallone, A., Hunter, A. & Douglas, G. C. Polyploid induction in vitro using colchicine and oryzalin on Hebe ‘Oratia Beauty’: Production and characterization of the vegetative traits. Sci. Hortic. 179, 59–66. https://doi.org/10.1016/j.scienta.2014.09.014 (2014).

    Google Scholar 

  49. Huang, H., Gao, S., Wang, D., Huang, P. & Li, J. Autotetraploidy induced in Nianmaohuangqin (Radix Scutellariae viscidulae) with colchicine in vitro. J. Tradit. Chin. Med. 34, 199–205. https://doi.org/10.1016/S0254-6272(14)60079-0 (2014).

    Google Scholar 

  50. Moghbel, N., Borujeni, M. K. & Bernard, F. Colchicine effect on the DNA content and stomata size of Glycyrrhiza glabra var. glandulifera and Carthamus tinctorius L. cultured in vitro. J. Genet. Eng. Biotechnol. 13, 1–6. https://doi.org/10.1016/j.jgeb.2015.02.002 (2015).

    Google Scholar 

  51. Ilczuk, A. Wpływ wybranych czynników na rozwój, rozmnażanie i transformację genetyczną zwartnicy Chmiela (Hippeastrum × chmielii Chm.). PhD thesis, Warsaw University of Life Sciences, Warszawa, Poland (2005).

  52. García, N. et al. Generic classification of Amaryllidaceae tribe Hippeastreae. Taxon 68, 481–498. https://doi.org/10.1002/tax.12062 (2019).

    Google Scholar 

  53. Xiong, M. et al. Genetic analysis of 38 double-flowered amaryllis (Hippeastrum hybridum) cultivars based on SRAP markers. Acta Sci. Pol. Hortorum Cultus 20, 15–25. https://doi.org/10.24326/asphc.2021.3.2 (2021).

    Google Scholar 

  54. Liu, X. F., Sun, Y. B., Zhu, G. F., Huang, L. L. & Yu, B. Complete chloroplast genomes and comparative analyses of Hippeastrum ‘Milady’, H. albertii and H. reticulatum (Amaryllidaceae). PLoS One 17, e0271335. https://doi.org/10.1371/journal.pone.0271335 (2022).

    Google Scholar 

  55. Chakrabarty, D., Gupta, V. N. & Datta, S. K. Varietal identification and assessment of genetic relationships in Hippeastrum using RAPD markers. Plant Biotechnol. Rep. 1, 211–217. https://doi.org/10.1007/s11816-007-0034-3 (2007).

    Google Scholar 

  56. Zhang, L. et al. Genetic relationship analysis and fingerprint construction of 62 cultivars of Hippeastrum spp. based on ISSR marker. J. Plant Resour. Environ. 21, 48–54 (2012).

    Google Scholar 

  57. Phuong, P. T. M., Isshiki, S. & Miyajima, I. Genetic variation of Hippeastrum accessions in Vietnam. J. Fac. Agric. Kyushu Univ. 59, 235–241. https://doi.org/10.5109/1467623 (2014).

    Google Scholar 

  58. Huong, B. T. T., Tuong, H. M. & Hoa, N. H. Assessment of ploidy level and genetic relationships by RAPD markers of progenies and parental lines in Hippeastrum. Acad. J. Biol. 36, 225–231 (2014).

    Google Scholar 

  59. Varkulevičienė, J. & Žukauskienė, J. Morphologic and genetic evaluation of Lithuanian Hippeastrum × hybridum. Optim. Ornament. Gard. Plant Assort. Technol. Environ. 12, 125–130 (2016).

    Google Scholar 

  60. Datta, S. K. Characterization and utilization of DNA-based markers for selective breeding of ornamentals: Hippeastrum/Amaryllis. Nucleus 66, 205–214 (2023).

    Google Scholar 

  61. Yu, B., Huang, L. L., Zhu, Y., Zhu, G. F. & Sun, Y. B. Induction of embryogenic calli from immature pedicels and efficient plant regeneration of Hippeastrum. Acta Hortic. Sin. 47, 907–915 (2020).

    Google Scholar 

  62. Schwedersky, M. B. et al. Genetic diversity and chemical profile of Rhodophiala bifida populations from Brazil. Rev. Bras. Farmacogn. 30, 427–431 (2020).

    Google Scholar 

  63. Wang, Y. et al. Revealing the complex genetic structure of cultivated Amaryllis (Hippeastrum hybridum) using transcriptome-derived microsatellite markers. Sci. Rep. 8, 1–12 (2018).

    Google Scholar 

  64. Koninklijke Algemeene Vereeniging voor Bloembollencultuur (KAVB). Hippeastrum Information. Available online: https://www.kavb.nl/detail?cid=36209 (accessed on 14 August 2024).

  65. Dyki, B. & Habdas, H. Metoda izolowania epidermy liści pomidora i ogórka dla mikroskopowej oceny rozwoju grzybów patogenicznych. Acta Agrobot. 49, 123–129. https://doi.org/10.5586/aa.1996.013 (1996).

    Google Scholar 

  66. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant. 15, 473–497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x (1962).

    Google Scholar 

Download references