Mosquito sex separation using complementation of selectable traits and engineered neo-sex chromosomes

mosquito-sex-separation-using-complementation-of-selectable-traits-and-engineered-neo-sex-chromosomes
Mosquito sex separation using complementation of selectable traits and engineered neo-sex chromosomes

References

  1. Nie, P. & Feng, J. Niche and range shifts of Aedes aegypti and Ae. albopictus suggest that the latecomer shows a greater invasiveness. Insects 14, 810 (2023).

    Google Scholar 

  2. Alphey, L. Genetic control of mosquitoes. Annu. Rev. Entomol. 59, 205–224 (2014).

    Google Scholar 

  3. Raban, R., Marshall, J. M., Hay, B. A. & Akbari, O. S. Manipulating the destiny of wild populations using CRISPR. Annu. Rev. Genet. 57, 361–390 (2023).

    Google Scholar 

  4. Wang, G.-H. et al. Combating mosquito-borne diseases using genetic control technologies. Nat. Commun. 12, 4388 (2021).

    Google Scholar 

  5. Balatsos, G. et al. Sterile insect technique (SIT) field trial targeting the suppression of Aedes albopictus in Greece. Parasite 31, 17 (2024).

    Google Scholar 

  6. Crawford, J. E. et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 38, 482–492 (2020).

    Google Scholar 

  7. Franz, G. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 427–451 (Springer, 2005).

  8. Augustinos, A. A. et al. Ceratitis capitata genetic sexing strains: laboratory evaluation of strains from mass-rearing facilities worldwide. Entomol. Exp. Appl. 164, 305–317 (2017).

    Google Scholar 

  9. Newton, M. E., Southern, D. I. & Wood, R. J. X and Y chromosomes of Aedes aegypti (L.) distinguished by Giemsa C-banding. Chromosoma 49, 41–49 (1974).

    Google Scholar 

  10. Hall, A. B. et al. A male-determining factor in the mosquito Aedes aegypti. Science 348, 1268–1270 (2015).

    Google Scholar 

  11. Lutrat, C., Olmo, R. P., Baldet, T., Bouyer, J. & Marois, E. Transgenic expression of Nix converts genetic females into males and allows automated sex sorting in Aedes albopictus. Commun. Biol. 5, 210 (2022).

    Google Scholar 

  12. Zhao, Y. et al. The AalNix3&4 isoform is required and sufficient to convert Aedes albopictus females into males. PLoS Genet. 18, e1010280 (2022).

    Google Scholar 

  13. Li, M. et al. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti. Proc. Natl. Acad. Sci. USA 114, E10540–E10549 (2017).

    Google Scholar 

  14. Liu, T. et al. Construction of an efficient genomic editing system with CRISPR/Cas9 in the vector mosquito Aedes albopictus. Insect Sci. 26, 1045–1054 (2019).

    Google Scholar 

  15. True, J. R. Insect melanism: the molecules matter. Trends Ecol. Evol. 18, 640–647 (2003).

    Google Scholar 

  16. Noh, M. Y., Mun, S., Kramer, K. J., Muthukrishnan, S. & Arakane, Y. Yellow-y functions in egg melanization and chorion morphology of the Asian tiger mosquito, Aedes albopictus. Front. Cell Dev. Biol. 9, 769788 (2021).

    Google Scholar 

  17. O’Leary, S. & Adelman, Z. N. CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes. PLOS Negl. Trop. Dis. 14, e0008971 (2020).

    Google Scholar 

  18. Hall, A. B. et al. Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females. BMC Genomics 14, 273 (2013).

    Google Scholar 

  19. Carvalho, A. B. & Clark, A. G. Efficient identification of Y chromosome sequences in the human and Drosophila genomes. Genome Res. 23, 1894–1903 (2013).

    Google Scholar 

  20. Papathanos, P. A. & Windbichler, N. Redkmer: an assembly-free pipeline for the identification of abundant and specific X-chromosome target sequences for X-shredding by CRISPR endonucleases. CRISPR J. 1, 88–98 (2018).

    Google Scholar 

  21. Palatini, U. et al. Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. BMC Genomics 18, 512 (2017).

    Google Scholar 

  22. Balestrino, F., Puggioli, A., Gilles, J. R. L. & Bellini, R. Validation of a new larval rearing unit for Aedes albopictus (Diptera: Culicidae) mass rearing. PLoS ONE 9, e91914 (2014).

    Google Scholar 

  23. Malfacini, M. et al. Aedes albopictus sterile male production: influence of strains, larval diet and mechanical sexing tools. Insects 13, 899 (2022).

    Google Scholar 

  24. Mamai, W. et al. Efficiency assessment of a novel automatic mosquito pupae sex separation system in support of area-wide male-based release strategies. Sci. Rep. 14, 9170 (2024).

    Google Scholar 

  25. Beukeboom, L. W. Size matters in insects – an introduction. Entomol. Exp. Appl. 166, 2–3 (2018).

    Google Scholar 

  26. Noh, M. Y. et al. Yellow-g and Yellow-g2 proteins are required for egg desiccation resistance and temporal pigmentation in the Asian tiger mosquito, Aedes albopictus. Insect Biochem. Mol. Biol. 122, 103386 (2020).

    Google Scholar 

  27. Swan, T. et al. A literature review of dispersal pathways of Aedes albopictus across different spatial scales: implications for vector surveillance. Parasit. Vectors 15, 303 (2022).

    Google Scholar 

  28. Girard, M. et al. Human-aided dispersal and population bottlenecks facilitate parasitism escape in the most invasive mosquito species. PNAS Nexus 3, gae175 (2024).

    Google Scholar 

  29. Lutrat, C. et al. Sex sorting for pest control: it’s raining men!. Trends Parasitol. 35, 649–662 (2019).

    Google Scholar 

  30. Bellini, R., Puggioli, A., Balestrino, F., Carrieri, M. & Urbanelli, S. Exploring protandry and pupal size selection for Aedes albopictus sex separation. Parasit. Vectors 11, 650 (2018).

    Google Scholar 

  31. Zacarés, M. et al. Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species. Parasit. Vectors 11, 656 (2018).

    Google Scholar 

  32. Lutrat, C. et al. Combining two genetic sexing strains allows sorting of non-transgenic males for Aedes genetic control. Commun. Biol. 6, 646 (2023).

    Google Scholar 

  33. Papathanos, P. A. et al. A perspective on the need and current status of efficient sex separation methods for mosquito genetic control. Parasit. Vectors 11, 654 (2018).

    Google Scholar 

  34. Morgan, T. H. The origin of nine wing mutations in Drosophila. Science 33, 496–499 (1911).

    Google Scholar 

  35. Benet, J., Oliver-Bonet, M., Cifuentes, P., Templado, C. & Navarro, J. Segregation of chromosomes in sperm of reciprocal translocation carriers: a review. Cytogenet. Genome Res. 111, 281–290 (2005).

    Google Scholar 

  36. Gamez, S., Antoshechkin, I., Mendez-Sanchez, S. C., Campo, C. H. & Akbari, O. S. Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive. Nat. Commun. 12, 5434 (2021).

    Google Scholar 

  37. Buchman, A. & Akbari, O. S. Site-specific transgenesis of the Drosophila melanogaster Y-chromosome using CRISPR/Cas9. Insect Mol. Biol. 28, 65–73 (2019).

    Google Scholar 

  38. Dimitri, P. & Pisano, C. Position effect variegation in Drosophila melanogaster: relationship between suppression effect and the amount of Y chromosome. Genetics 122, 793–800 (1989).

    Google Scholar 

  39. Berloco, M., Palumbo, G., Piacentini, L., Pimpinelli, S. & Fanti, L. Position effect variegation and viability are both sensitive to dosage of constitutive heterochromatin in Drosophila. G3 (Bethesda) 4, 1709–1716 (2014).

    Google Scholar 

  40. Aryan, A. et al. Nix alone is sufficient to convert female Aedes aegypti into fertile males and myo-sex is needed for male flight. Proc. Natl. Acad. Sci. USA 117, 17702–17709 (2020).

    Google Scholar 

  41. Krzywinska, E. & Krzywinski, J. Effects of stable ectopic expression of the primary sex determination gene Yob in the mosquito Anopheles gambiae. Parasit. Vectors 11, 646 (2018).

    Google Scholar 

  42. Criscione, F., Qi, Y. & Tu, Z. GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi. eLife 5, e19281 (2016).

    Google Scholar 

  43. Qi, Y., Criscione, F., Biedler, J. K., Sharakhov, I. V. & Tu, Z. Guy1, a Y-linked embryonic signal, regulates dosage compensation in Anopheles stephensi by increasing X gene expression. eLife 8, e43570 (2019).

    Google Scholar 

  44. Salvemini, M. et al. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti. BMC Evol. Biol. 11, 41 (2011).

    Google Scholar 

  45. Salvemini, M. et al. The orthologue of the fruitfly sex behaviour gene fruitless in the mosquito Aedes aegypti: evolution of genomic organisation and alternative splicing. PLoS ONE 8, e48554 (2013).

    Google Scholar 

  46. Puggioli, A. et al. Efficiency of three diets for larval development in mass rearing Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 50, 819–825 (2013).

    Google Scholar 

  47. Mamai, W. et al. Optimizing larval mass-rearing techniques for Aedes mosquitoes: enhancing production and quality for genetic control strategies. Parasite 32, 29 (2025).

    Google Scholar 

  48. Sutter, A., Price, T. A. & Wedell, N. The impact of female mating strategies on the success of insect control technologies. Curr. Opin. Insect Sci. 45, 75–83 (2021).

    Google Scholar 

  49. Alphey, L. et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 10, 295–311 (2010).

    Google Scholar 

  50. Knipling, E. F. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48, 459–462 (1955).

    Google Scholar 

  51. Lance, D. R. & McInnis, D. O. in Sterile Insect Technique (eds Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 113–142 (CRC Press, 2021).

  52. Whitten, M. & Mahon, R. in Sterile Insect Technique (eds Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 601–626 (Springer, Berlin/Heidelberg, 2006).

  53. Fried, M. Determination of sterile-insect competitiveness. J. Econ. Entomol. 64, 869–872 (1971).

    Google Scholar 

  54. Hooper, G. H. S. & Horton, I. F. Competitiveness of sterilized male insects: a method of calculating the variance of the value derived from competitive mating tests. J. Econ. Entomol. 74, 119–121 (1981).

    Google Scholar 

  55. Bond, J. G. et al. Sexual competitiveness and induced egg sterility by Aedes aegypti and Aedes albopictus gamma-irradiated males: a laboratory and field study in Mexico. Insects 12, 145 (2021).

    Google Scholar 

  56. Chen, C., Qualls, W. A., Xue, R., Gibson, S. & Hahn, D. A. X-rays and gamma rays do not differ in their effectiveness for sterilizing pupae and adults of the mosquito Aedes aegypti (Diptera: Culicidae). J. Econ. Entomol. 118, toaf030 (2025).

    Google Scholar 

  57. Kittayapong, P., Ninphanomchai, S., Thayanukul, P., Yongyai, J. & Limohpasmanee, W. Comparison on the quality of sterile Aedes aegypti mosquitoes produced by either radiation-based sterile insect technique or Wolbachia-induced incompatible insect technique. PLoS ONE 20, e0314683 (2025).

    Google Scholar 

  58. Yamada, H. et al. Sperm storage and use following multiple insemination in Aedes albopictus: encouraging insights for the sterile insect technique. Insects 15, 721 (2024).

    Google Scholar 

  59. Zheng, M.-L., Zhang, D.-J., Damiens, D. D., Lees, R. S. & Gilles, J. R. L. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae) – II – egg storage and hatching. Parasit. Vectors 8, 348 (2015).

    Google Scholar 

  60. Concordet, J.-P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).

    Google Scholar 

  61. Fuchs, S., Nolan, T. & Crisanti, A. Mosquito transgenic technologies to reduce Plasmodium transmission. Methods Mol. Biol. 923, 601–622 (2013).

    Google Scholar 

  62. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Google Scholar 

  63. Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).

    Google Scholar 

  64. Dobin, A. & Gingeras, T. R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinform. 51, 11.14.1–11.14.19 (2015).

    Google Scholar 

  65. Broad Institute. Picard toolkit. http://broadinstitute.github.io/picard/ (accessed 3 March 2024).

  66. Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).

    Google Scholar 

  67. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).

    Google Scholar 

  68. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    Google Scholar 

  69. Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).

    Google Scholar 

  70. Blanckenhorn, W. U., Stillwell, R. C., Young, K. A., Fox, C. W. & Ashton, K. G. Proximate causes of Rensch’s rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am. Nat. 169, 245–257 (2007).

    Google Scholar 

Download references