References
-
Nie, P. & Feng, J. Niche and range shifts of Aedes aegypti and Ae. albopictus suggest that the latecomer shows a greater invasiveness. Insects 14, 810 (2023).
-
Alphey, L. Genetic control of mosquitoes. Annu. Rev. Entomol. 59, 205–224 (2014).
-
Raban, R., Marshall, J. M., Hay, B. A. & Akbari, O. S. Manipulating the destiny of wild populations using CRISPR. Annu. Rev. Genet. 57, 361–390 (2023).
-
Wang, G.-H. et al. Combating mosquito-borne diseases using genetic control technologies. Nat. Commun. 12, 4388 (2021).
-
Balatsos, G. et al. Sterile insect technique (SIT) field trial targeting the suppression of Aedes albopictus in Greece. Parasite 31, 17 (2024).
-
Crawford, J. E. et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 38, 482–492 (2020).
-
Franz, G. in Sterile Insect Technique: Principles and Practice in Area-Wide Integrated Pest Management (eds Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 427–451 (Springer, 2005).
-
Augustinos, A. A. et al. Ceratitis capitata genetic sexing strains: laboratory evaluation of strains from mass-rearing facilities worldwide. Entomol. Exp. Appl. 164, 305–317 (2017).
-
Newton, M. E., Southern, D. I. & Wood, R. J. X and Y chromosomes of Aedes aegypti (L.) distinguished by Giemsa C-banding. Chromosoma 49, 41–49 (1974).
-
Hall, A. B. et al. A male-determining factor in the mosquito Aedes aegypti. Science 348, 1268–1270 (2015).
-
Lutrat, C., Olmo, R. P., Baldet, T., Bouyer, J. & Marois, E. Transgenic expression of Nix converts genetic females into males and allows automated sex sorting in Aedes albopictus. Commun. Biol. 5, 210 (2022).
-
Zhao, Y. et al. The AalNix3&4 isoform is required and sufficient to convert Aedes albopictus females into males. PLoS Genet. 18, e1010280 (2022).
-
Li, M. et al. Germline Cas9 expression yields highly efficient genome engineering in a major worldwide disease vector, Aedes aegypti. Proc. Natl. Acad. Sci. USA 114, E10540–E10549 (2017).
-
Liu, T. et al. Construction of an efficient genomic editing system with CRISPR/Cas9 in the vector mosquito Aedes albopictus. Insect Sci. 26, 1045–1054 (2019).
-
True, J. R. Insect melanism: the molecules matter. Trends Ecol. Evol. 18, 640–647 (2003).
-
Noh, M. Y., Mun, S., Kramer, K. J., Muthukrishnan, S. & Arakane, Y. Yellow-y functions in egg melanization and chorion morphology of the Asian tiger mosquito, Aedes albopictus. Front. Cell Dev. Biol. 9, 769788 (2021).
-
O’Leary, S. & Adelman, Z. N. CRISPR/Cas9 knockout of female-biased genes AeAct-4 or myo-fem in Ae. aegypti results in a flightless phenotype in female, but not male mosquitoes. PLOS Negl. Trop. Dis. 14, e0008971 (2020).
-
Hall, A. B. et al. Six novel Y chromosome genes in Anopheles mosquitoes discovered by independently sequencing males and females. BMC Genomics 14, 273 (2013).
-
Carvalho, A. B. & Clark, A. G. Efficient identification of Y chromosome sequences in the human and Drosophila genomes. Genome Res. 23, 1894–1903 (2013).
-
Papathanos, P. A. & Windbichler, N. Redkmer: an assembly-free pipeline for the identification of abundant and specific X-chromosome target sequences for X-shredding by CRISPR endonucleases. CRISPR J. 1, 88–98 (2018).
-
Palatini, U. et al. Comparative genomics shows that viral integrations are abundant and express piRNAs in the arboviral vectors Aedes aegypti and Aedes albopictus. BMC Genomics 18, 512 (2017).
-
Balestrino, F., Puggioli, A., Gilles, J. R. L. & Bellini, R. Validation of a new larval rearing unit for Aedes albopictus (Diptera: Culicidae) mass rearing. PLoS ONE 9, e91914 (2014).
-
Malfacini, M. et al. Aedes albopictus sterile male production: influence of strains, larval diet and mechanical sexing tools. Insects 13, 899 (2022).
-
Mamai, W. et al. Efficiency assessment of a novel automatic mosquito pupae sex separation system in support of area-wide male-based release strategies. Sci. Rep. 14, 9170 (2024).
-
Beukeboom, L. W. Size matters in insects – an introduction. Entomol. Exp. Appl. 166, 2–3 (2018).
-
Noh, M. Y. et al. Yellow-g and Yellow-g2 proteins are required for egg desiccation resistance and temporal pigmentation in the Asian tiger mosquito, Aedes albopictus. Insect Biochem. Mol. Biol. 122, 103386 (2020).
-
Swan, T. et al. A literature review of dispersal pathways of Aedes albopictus across different spatial scales: implications for vector surveillance. Parasit. Vectors 15, 303 (2022).
-
Girard, M. et al. Human-aided dispersal and population bottlenecks facilitate parasitism escape in the most invasive mosquito species. PNAS Nexus 3, gae175 (2024).
-
Lutrat, C. et al. Sex sorting for pest control: it’s raining men!. Trends Parasitol. 35, 649–662 (2019).
-
Bellini, R., Puggioli, A., Balestrino, F., Carrieri, M. & Urbanelli, S. Exploring protandry and pupal size selection for Aedes albopictus sex separation. Parasit. Vectors 11, 650 (2018).
-
Zacarés, M. et al. Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species. Parasit. Vectors 11, 656 (2018).
-
Lutrat, C. et al. Combining two genetic sexing strains allows sorting of non-transgenic males for Aedes genetic control. Commun. Biol. 6, 646 (2023).
-
Papathanos, P. A. et al. A perspective on the need and current status of efficient sex separation methods for mosquito genetic control. Parasit. Vectors 11, 654 (2018).
-
Morgan, T. H. The origin of nine wing mutations in Drosophila. Science 33, 496–499 (1911).
-
Benet, J., Oliver-Bonet, M., Cifuentes, P., Templado, C. & Navarro, J. Segregation of chromosomes in sperm of reciprocal translocation carriers: a review. Cytogenet. Genome Res. 111, 281–290 (2005).
-
Gamez, S., Antoshechkin, I., Mendez-Sanchez, S. C., Campo, C. H. & Akbari, O. S. Exploiting a Y chromosome-linked Cas9 for sex selection and gene drive. Nat. Commun. 12, 5434 (2021).
-
Buchman, A. & Akbari, O. S. Site-specific transgenesis of the Drosophila melanogaster Y-chromosome using CRISPR/Cas9. Insect Mol. Biol. 28, 65–73 (2019).
-
Dimitri, P. & Pisano, C. Position effect variegation in Drosophila melanogaster: relationship between suppression effect and the amount of Y chromosome. Genetics 122, 793–800 (1989).
-
Berloco, M., Palumbo, G., Piacentini, L., Pimpinelli, S. & Fanti, L. Position effect variegation and viability are both sensitive to dosage of constitutive heterochromatin in Drosophila. G3 (Bethesda) 4, 1709–1716 (2014).
-
Aryan, A. et al. Nix alone is sufficient to convert female Aedes aegypti into fertile males and myo-sex is needed for male flight. Proc. Natl. Acad. Sci. USA 117, 17702–17709 (2020).
-
Krzywinska, E. & Krzywinski, J. Effects of stable ectopic expression of the primary sex determination gene Yob in the mosquito Anopheles gambiae. Parasit. Vectors 11, 646 (2018).
-
Criscione, F., Qi, Y. & Tu, Z. GUY1 confers complete female lethality and is a strong candidate for a male-determining factor in Anopheles stephensi. eLife 5, e19281 (2016).
-
Qi, Y., Criscione, F., Biedler, J. K., Sharakhov, I. V. & Tu, Z. Guy1, a Y-linked embryonic signal, regulates dosage compensation in Anopheles stephensi by increasing X gene expression. eLife 8, e43570 (2019).
-
Salvemini, M. et al. Genomic organization and splicing evolution of the doublesex gene, a Drosophila regulator of sexual differentiation, in the dengue and yellow fever mosquito Aedes aegypti. BMC Evol. Biol. 11, 41 (2011).
-
Salvemini, M. et al. The orthologue of the fruitfly sex behaviour gene fruitless in the mosquito Aedes aegypti: evolution of genomic organisation and alternative splicing. PLoS ONE 8, e48554 (2013).
-
Puggioli, A. et al. Efficiency of three diets for larval development in mass rearing Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 50, 819–825 (2013).
-
Mamai, W. et al. Optimizing larval mass-rearing techniques for Aedes mosquitoes: enhancing production and quality for genetic control strategies. Parasite 32, 29 (2025).
-
Sutter, A., Price, T. A. & Wedell, N. The impact of female mating strategies on the success of insect control technologies. Curr. Opin. Insect Sci. 45, 75–83 (2021).
-
Alphey, L. et al. Sterile-insect methods for control of mosquito-borne diseases: an analysis. Vector Borne Zoonotic Dis. 10, 295–311 (2010).
-
Knipling, E. F. Possibilities of insect control or eradication through the use of sexually sterile males. J. Econ. Entomol. 48, 459–462 (1955).
-
Lance, D. R. & McInnis, D. O. in Sterile Insect Technique (eds Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 113–142 (CRC Press, 2021).
-
Whitten, M. & Mahon, R. in Sterile Insect Technique (eds Dyck, V. A., Hendrichs, J. & Robinson, A. S.) 601–626 (Springer, Berlin/Heidelberg, 2006).
-
Fried, M. Determination of sterile-insect competitiveness. J. Econ. Entomol. 64, 869–872 (1971).
-
Hooper, G. H. S. & Horton, I. F. Competitiveness of sterilized male insects: a method of calculating the variance of the value derived from competitive mating tests. J. Econ. Entomol. 74, 119–121 (1981).
-
Bond, J. G. et al. Sexual competitiveness and induced egg sterility by Aedes aegypti and Aedes albopictus gamma-irradiated males: a laboratory and field study in Mexico. Insects 12, 145 (2021).
-
Chen, C., Qualls, W. A., Xue, R., Gibson, S. & Hahn, D. A. X-rays and gamma rays do not differ in their effectiveness for sterilizing pupae and adults of the mosquito Aedes aegypti (Diptera: Culicidae). J. Econ. Entomol. 118, toaf030 (2025).
-
Kittayapong, P., Ninphanomchai, S., Thayanukul, P., Yongyai, J. & Limohpasmanee, W. Comparison on the quality of sterile Aedes aegypti mosquitoes produced by either radiation-based sterile insect technique or Wolbachia-induced incompatible insect technique. PLoS ONE 20, e0314683 (2025).
-
Yamada, H. et al. Sperm storage and use following multiple insemination in Aedes albopictus: encouraging insights for the sterile insect technique. Insects 15, 721 (2024).
-
Zheng, M.-L., Zhang, D.-J., Damiens, D. D., Lees, R. S. & Gilles, J. R. L. Standard operating procedures for standardized mass rearing of the dengue and chikungunya vectors Aedes aegypti and Aedes albopictus (Diptera: Culicidae) – II – egg storage and hatching. Parasit. Vectors 8, 348 (2015).
-
Concordet, J.-P. & Haeussler, M. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46, W242–W245 (2018).
-
Fuchs, S., Nolan, T. & Crisanti, A. Mosquito transgenic technologies to reduce Plasmodium transmission. Methods Mol. Biol. 923, 601–622 (2013).
-
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
-
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10–12 (2011).
-
Dobin, A. & Gingeras, T. R. Mapping RNA-seq reads with STAR. Curr. Protoc. Bioinform. 51, 11.14.1–11.14.19 (2015).
-
Broad Institute. Picard toolkit. http://broadinstitute.github.io/picard/ (accessed 3 March 2024).
-
Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).
-
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
-
Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).
-
Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).
-
Blanckenhorn, W. U., Stillwell, R. C., Young, K. A., Fox, C. W. & Ashton, K. G. Proximate causes of Rensch’s rule: does sexual size dimorphism in arthropods result from sex differences in development time? Am. Nat. 169, 245–257 (2007).
