Multidimensional strategy enables scalable metabolome diversity in microbial fermentations

multidimensional-strategy-enables-scalable-metabolome-diversity-in-microbial-fermentations
Multidimensional strategy enables scalable metabolome diversity in microbial fermentations

References

  1. Newman, D. J. & Cragg, G. M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 83, 770–803 (2020).

    Google Scholar 

  2. Romano, S., Jackson, S. A., Patry, S. & Dobson, A. D. W. Extending the “One Strain Many Compounds” (OSMAC) principle to marine microorganisms. Marine Drugs 16, 244 (2018).

    Google Scholar 

  3. Seyedsayamdost, M. R. Toward a global picture of bacterial secondary metabolism. J. Ind. Microbiol. Biotechnol. 46, 301–311 (2019).

    Google Scholar 

  4. Pan, R., Bai, X., Chen, J., Zhang, H. & Wang, H. Exploring structural diversity of microbe secondary metabolites using OSMAC strategy: a literature review. Front. Microbiol. 10, 294 (2019).

    Google Scholar 

  5. Wehrs, M. et al. Engineering robust production microbes for large-scale cultivation. Trends Microbiol. 27, 524–537 (2019).

    Google Scholar 

  6. Lindig, A., Hubmann, G. & Lütz, S. Microtiter plate cultivation systems enable chemically diverse metabolic footprints during bacterial natural product discovery. Biotechnol. Bioeng. 122, 2021–2036 (2025).

    Google Scholar 

  7. Zhang, M. M., Wang, Y., Ang, E. L. & Zhao, H. Engineering microbial hosts for production of bacterial natural products. Nat. Prod. Rep. 33, 963–987 (2016).

    Google Scholar 

  8. Helf, M. J. et al. Scaling up for success: from bioactive natural products to new medicines. Nat. Prod. Rep. (2024).

    Google Scholar 

  9. Katz, L. & Baltz, R. H. Natural product discovery: past, present, and future. J. Ind. Microbiol. Biotechnol. 43, 155–176 (2016).

    Google Scholar 

  10. Delvigne, F., Takors, R., Mudde, R., van Gulik, W. & Noorman, H. Bioprocess scale-up/down as integrative enabling technology: from fluid mechanics to systems biology and beyond. Microbial Biotechnol. 10, 1267–1274 (2017).

    Google Scholar 

  11. Crater, J. S. & Lievense, J. C. Scale-up of industrial microbial processes. FEMS Microbiol. Lett. 365, fny138 (2018).

    Google Scholar 

  12. Xia, J. et al. Understanding the scale-up of fermentation processes from the viewpoint of the flow field in bioreactors and the physiological response of strains. Chin. J. Chem. Eng. 30, 178–184 (2021).

    Google Scholar 

  13. Marques, M. P. C., Cabral, J. M. S. & Fernandes, P. Bioprocess scale-up: quest for the parameters to be used as criterion to move from microreactors to lab-scale. J. Chem. Tech. Biotech. 85, 1184–1198 (2010).

    Google Scholar 

  14. Xiaoming Yang. In Manual of Industrial Microbiology and Biotechnology (John Wiley & Sons, Ltd, 2014), 669–675.

  15. Kensy, F., Engelbrecht, C. & Büchs, J. Scale-up from microtiter plate to laboratory fermenter: evaluation by online monitoring techniques of growth and protein expression in Escherichia coli and Hansenula polymorpha fermentations. Microb. Cell Fact 8, 68 (2009).

    Google Scholar 

  16. Wewetzer, S. J. et al. Parallel use of shake flask and microtiter plate online measuring devices (RAMOS and BioLector) reduces the number of experiments in laboratory-scale stirred tank bioreactors. J. Biol. Eng. 9, 9 (2015).

    Google Scholar 

  17. Micheletti, M. et al. Fluid mixing in shaken bioreactors: Implications for scale-up predictions from microlitre-scale microbial and mammalian cell cultures. Chem. Eng. Sci. 61, 2939–2949 (2006).

    Google Scholar 

  18. Islam, R. S., Tisi, D., Levy, M. S. & Lye, G. J. Framework for the rapid optimization of soluble protein expression in Escherichia coli combining microscale experiments and statistical experimental design. Biotechnol. Progress 23, 785–793 (2007).

    Google Scholar 

  19. Funke, M. et al. Bioprocess control in microscale: scalable fermentations in disposable and user-friendly microfluidic systems. Microb. Cell Fact 9, 86 (2010).

    Google Scholar 

  20. Unthan, S., Radek, A., Wiechert, W., Oldiges, M. & Noack, S. Bioprocess automation on a mini pilot plant enables fast quantitative microbial phenotyping. Microb. Cell Fact 14, 32 (2015).

    Google Scholar 

  21. Seletzky, J. M. et al. Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH. Biotech. Bioeng. 98, 800–811 (2007).

    Google Scholar 

  22. Trujillo-Roldán, M. A. et al. Scale-up from shake flasks to pilot-scale production of the plant growth-promoting bacterium Azospirillum brasilense for preparing a liquid inoculant formulation. Appl. Microbiol. Biotechnol. 97, 9665–9674 (2013).

    Google Scholar 

  23. Sohoni, S. V., Bapat, P. M. & Lantz, A. E. Robust, small-scale cultivation platform for Streptomyces coelicolor. Microb. Cell Fact 11, 9 (2012).

    Google Scholar 

  24. Koepff, J. et al. Fast and reliable strain characterization of Streptomyces lividans through micro-scale cultivation. Biotechnol. Bioeng. 114, 2011–2022 (2017).

    Google Scholar 

  25. Young, K. D. Bacterial morphology: why have different shapes?. Curr. Opinion Microbiol. 10, 596–600 (2007).

    Google Scholar 

  26. Zacchetti, B., Smits, P. & Claessen, D. Dynamics of pellet fragmentation and aggregation in liquid-grown cultures of Streptomyces lividans. Front. Microbiol. 9, 943 (2018).

    Google Scholar 

  27. Wang, H., Zhao, G. & Ding, X. Morphology engineering of Streptomyces coelicolor M145 by sub-inhibitory concentrations of antibiotics. Sci. Rep. 7, 13226 (2017).

    Google Scholar 

  28. Aleid, S. M., Hamad, S. H., Delaunay, S., Fick, M. & Olmos, E. Pristinamycin production using Streptomyces pristinaespiralis and date sirup as substrate-process modeling, optimization, and scale-up. Prep. Biochem. Biotechnol. 52, 1044–1050 (2022).

    Google Scholar 

  29. Demir, T., Hameş, E. E., Öncel, S. S. & Vardar-Sukan, F. An optimization approach to scale up keratinase production by Streptomyces sp. 2M21 by utilizing chicken feather. Int. Biodeterior. Biodegrad. 103, 134–140 (2015).

    Google Scholar 

  30. El-Naggar, N.E.-A. et al. Process development for scale-up production of a therapeutic L-asparaginase by Streptomyces brollosae NEAE-115 from shake flasks to bioreactor. Sci. Rep. 9, 13571 (2019).

    Google Scholar 

  31. Elsayed, E. A., Farid, M. A. & El-Enshasy, H. A. Enhanced Natamycin production by Streptomyces natalensis in shake-flasks and stirred tank bioreactor under batch and fed-batch conditions. BMC Biotechnol. 19, 46 (2019).

    Google Scholar 

  32. Gamboa-Suasnavart, R. A. et al. Scale-up from shake flasks to bioreactor, based on power input and Streptomyces lividans morphology, for the production of recombinant APA (45/47 kDa protein) from Mycobacterium tuberculosis. World J. Microbiol. Biotechnol. 29, 1421–1429 (2013).

    Google Scholar 

  33. Elsayed, E. A., Omar, H. G. & El-Enshasy, H. A. Development of fed-batch cultivation strategy for efficient oxytetracycline production by Streptomyces rimosus at semi-industrial scale. Braz. arch. biol. technol. 58, 676–685 (2015).

    Google Scholar 

  34. Gamboa-Suasnavart R.A. et al. Volumetric power input as a reliable parameter for scale-up from shake flask to stirred-tank bioreactor: Production of a recombinant glycoprotein by Streptomyces lividans. 16652738 (2019).

  35. Hamed, M. B. et al. Large-scale production of a thermostable Rhodothermus marinus cellulase by heterologous secretion from Streptomyces lividans. Microb. Cell Fact 16, 232 (2017).

    Google Scholar 

  36. Minas, W., Bailey, J. E. & Duetz, W. Streptomycetes in micro-cultures: growth, production of secondary metabolites, and storage and retrieval in the 96-well format. Antonie Van Leeuwenhoek 78, 297–305 (2000).

    Google Scholar 

  37. Shi, J. et al. Titer improvement and pilot-scale production of platensimycin from Streptomyces platensis SB12026. J. Ind. Microbiol. Biotechnol. 43, 1027–1035 (2016).

    Google Scholar 

  38. Srivastava, A., Singh, V. & Tripathi, C. K. M. Scale up and optimization of cholesterol oxidase production from Streptomyces rimosus MTCC 10792 in a 3-L bioreactor. Environ. Sustain. 1, 99–107 (2018).

    Google Scholar 

  39. Schwarz, J., Hubmann, G., Rosenthal, K. & Lütz, S. Triaging of culture conditions for enhanced secondary metabolite diversity from different bacteria. Biomolecules 11, 193 (2021).

    Google Scholar 

  40. Lindig, A., Schwarz, J., Hubmann, G., Rosenthal, K. & Lütz, S. Bivariate one strain many compounds designs expand the secondary metabolite production space in Corallococcus coralloides. Microorganisms 11, 2592 (2023).

    Google Scholar 

  41. Chen, G., Wang, G. Y., Li, X., Waters, B. & Davies, J. Enhanced production of microbial metabolites in the presence of dimethyl sulfoxide. J. Antibiot. 53, 1145–1153 (2000).

    Google Scholar 

  42. Sekurova, O. N. et al. Targeted metabolomics and high-throughput RNA sequencing-based transcriptomics reveal massive changes in the Streptomyces venezuelae NRRL B-65442 metabolism caused by ethanol shock. Microbiol. Spectr. 10, e0367222 (2022).

    Google Scholar 

  43. Sekurova, O. N., Zhang, J., Kristiansen, K. A. & Zotchev, S. B. Activation of chloramphenicol biosynthesis in Streptomyces venezuelae ATCC 10712 by ethanol shock: insights from the promoter fusion studies. Microb. Cell Fact 15, 85 (2016).

    Google Scholar 

  44. Wang, D., Xu, P., Sun, J., Yuan, J. & Zhao, J. Effects of ethanol stress on epsilon-poly-l-lysine (ε-PL) biosynthesis in Streptomyces albulus X-18. Enzyme Microbial Technol. 153, 109907 (2022).

    Google Scholar 

  45. Duboc, P. & von Stockar, U. Systematic errors in data evaluation due to ethanol stripping and water vaporization. Biotech. Bioeng. 58, 428–439 (1998).

    Google Scholar 

  46. Eysseric, H. et al. There is not simple method to maintain a constant ethanol concentration in long-term cell culture: keys to a solution applied to the survey of astrocytic ethanol absorption. Alcohol (Fayetteville, N.Y.) 14(111), 115 (1997).

    Google Scholar 

  47. Pagliardini, J. et al. Quantitative evaluation of yeast’s requirement for glycerol formation in very high ethanol performance fed-batch process. Microb. Cell Fact 9, 36 (2010).

    Google Scholar 

  48. Büchs, J. Introduction to advantages and problems of shaken cultures. Biochem. Eng. J. 7, 91–98 (2001).

    Google Scholar 

  49. Funke, M., Diederichs, S., Kensy, F., Müller, C. & Büchs, J. The baffled microtiter plate: increased oxygen transfer and improved online monitoring in small scale fermentations. Biotechnol. Bioeng. 103, 1118–1128 (2009).

    Google Scholar 

  50. Lopes, M., Mota, M. & Belo, I. Oxygen mass transfer rate in a pressurized lab-scale stirred bioreactor. Chem. Eng. Technol. 36, 1779–1784 (2013).

    Google Scholar 

  51. Running, J. A. & Bansal, K. Oxygen transfer rates in shaken culture vessels from Fernbach flasks to microtiter plates. Biotech. Bioeng. 113, 1729–1735 (2016).

    Google Scholar 

  52. van Dissel, D., Claessen, D. & van Wezel, G. P. In Advances in Applied Microbiology, edited by S. Sariaslani & G. M. Gadd (Academic Press), 1–45. (2014)

  53. Roubos, J. A., Krabben, P., Luiten, R. G., Verbruggen, H. B. & Heijnen, J. J. A quantitative approach to characterizing cell lysis caused by mechanical agitation of Streptomyces clavuligerus. Biotechnol. Progress 17, 336–347 (2001).

    Google Scholar 

  54. Sánchez, S. et al. Carbon source regulation of antibiotic production. J. Antibiot. 63, 442–459 (2010).

    Google Scholar 

  55. Söderholm, N., Tanner, H. & Sandblad, L. Nutrient deprived growth of Streptomyces promotes foraging growth and enhanced antimicrobial activity. bioRxiv, 2024.04.15.589617 (2024).

  56. van Wezel, G. P., White, J., Young, P., Postma, P. W. & Bibb, M. J. Substrate induction and glucose repression of maltose utilization by Streptomyces coelicolor A3(2) is controlled by malR, a member of the lacl-galR family of regulatory genes. Mol. Microbiol. 23, 537–549 (1997).

    Google Scholar 

  57. Nikolaidis, M. et al. A panoramic view of the genomic landscape of the genus Streptomyces. Microb. Genom. 9, mgen001028 (2023).

    Google Scholar 

  58. Bentley, S. D. et al. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417, 141–147 (2002).

    Google Scholar 

  59. Chater, K. F., Biró, S., Lee, K. J., Palmer, T. & Schrempf, H. The complex extracellular biology of Streptomyces. FEMS Microbiol. Rev. 34, 171–198 (2010).

    Google Scholar 

  60. Kojima, I., Cheng, Y. R., Mohan, V. & Demain, A. L. Carbon source nutrition of rapamycin biosynthesis in Streptomyces hygroscopicus. J. Ind. Microbiol. 14, 436–439 (1995).

    Google Scholar 

  61. Kim, S. Y., Kim, Y. J., Lee, S.-W. & Lee, E.-H. Interactions between bacteria and nano (micro)-sized polystyrene particles by bacterial responses and microscopy. Chemosphere 306, 135584 (2022).

    Google Scholar 

  62. Baez, A. & Shiloach, J. Effect of elevated oxygen concentration on bacteria, yeasts, and cells propagated for production of biological compounds. Microb. Cell Fact 13, 181 (2014).

    Google Scholar 

  63. Senges, C. H. R. et al. The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. Proc. Natl. Acad. Sci. United States Am. 115, 2490–2495 (2018).

    Google Scholar 

  64. Pierwola, A., Krupinski, T., Zalupski, P., Chiarelli, M. & Castignetti, D. Degradation pathway and generation of monohydroxamic acids from the trihydroxamate siderophore deferrioxamine B. Appl. Environ. Microbiol. 70, 831–836 (2004).

    Google Scholar 

  65. Zhou, Y. et al. Effects of agitation, aeration and temperature on production of a novel glycoprotein GP-1 by Streptomyces kanasenisi ZX01 and scale-up based on volumetric oxygen transfer coefficient. Molecules 23, 125 (2018).

    Google Scholar 

  66. Gerson, D. F. & Kole, M. M. Quantitative measurements of mixing intensity in shake-flasks and stirred tank reactors. use of the mixmeter, a mixing process analyzer. Biochem. Eng. J. 7, 153–156 (2001).

    Google Scholar 

  67. Dürauer, A., Hobiger, S., Walther, C. & Jungbauer, A. Mixing at the microscale: power input in shaken microtiter plates. Biotechnol. J. 11, 1539–1549 (2016).

    Google Scholar 

  68. Peter, C. P., Suzuki, Y. & Büchs, J. Hydromechanical stress in shake flasks: correlation for the maximum local energy dissipation rate. Biotech. Bioeng. 93, 1164–1176 (2006).

    Google Scholar 

  69. Beites, T. et al. Streptomyces natalensis programmed cell death and morphological differentiation are dependent on oxidative stress. Sci. Rep. 5, 12887 (2015).

    Google Scholar 

  70. Guo, L., Xi, B. & Lu, L. Strategies to enhance production of metabolites in microbial co-culture systems. Bioresour. Technol. 406, 131049 (2024).

    Google Scholar 

  71. Tanaka, Y., Hosaka, T. & Ochi, K. Rare earth elements activate the secondary metabolite-biosynthetic gene clusters in Streptomyces coelicolor A3(2). J. Antibiot. 63, 477–481 (2010).

    Google Scholar 

  72. Okada, B. K. & Seyedsayamdost, M. R. Antibiotic dialogues: induction of silent biosynthetic gene clusters by exogenous small molecules. FEMS Microbiol. Rev. 41, 19–33 (2017).

    Google Scholar 

  73. Dunkel, T. et al. In situ microscopy as a tool for the monitoring of filamentous bacteria: a case study in an industrial activated sludge system dominated by M. parvicella. Water Sci. Technol. 73, 1333–1340 (2016).

    Google Scholar 

  74. Marquard, D. et al. In situ microscopy for online monitoring of cell concentration in Pichia pastoris cultivations. J. Biotechnol. 234, 90–98 (2016).

    Google Scholar 

  75. Gustavsson, R., Mandenius, C. F., Löfgren, S., Scheper, T. & Lindner, P. In situ microscopy as online tool for detecting microbial contaminations in cell culture. J. Biotechnol. 296, 53–60 (2019).

    Google Scholar 

  76. Zhang, J., Li, C., Yin, Y., Zhang, J. & Grzegorzek, M. Applications of artificial neural networks in microorganism image analysis: a comprehensive review from conventional multilayer perceptron to popular convolutional neural network and potential visual transformer. Artif. Intell. Rev. 56, 1013–1070 (2023).

    Google Scholar 

  77. Cutler, K. J. et al. Omnipose: a high-precision morphology-independent solution for bacterial cell segmentation. Nat. Methods 19, 1438–1448 (2022).

    Google Scholar 

  78. Guez, J.-S., Lacroix, P.-Y., Château, T. & Vial, C. Deep in situ microscopy for real-time analysis of mammalian cell populations in bioreactors. Sci .Rep. 13, 22045 (2023).

    Google Scholar 

  79. Whelan, J. et al. Use of focussed beam reflectance measurement (FBRM) for monitoring changes in biomass concentration. Bioprocess Biosyst. Eng. 35, 963–975 (2012).

    Google Scholar 

  80. Pearson, A. P., Glennon, B. & Kieran, P. M. Comparison of morphological characteristics of Streptomyces natalensis by image analysis and focused beam reflectance measurement. Biotechnol. Progress 19, 1342–1347 (2003).

    Google Scholar 

  81. Steinmann, A. et al. A targeted metabolomics method for extra- and intracellular metabolite quantification covering the complete monolignol and lignan synthesis pathway. Metab. Eng. Commun. 15, e00205 (2022).

    Google Scholar 

  82. Pluskal, T., Castillo, S., Villar-Briones, A. & Oresic, M. MZmine 2: modular framework for processing, visualizing, and analyzing mass spectrometry-based molecular profile data. BMC Bioinform. 11, 395 (2010).

    Google Scholar 

  83. Pagès, J. Analyse factorielle de données mixtes. Revue de Statistique Appliquée 52, 93–111 (2004).

    Google Scholar 

  84. Lê, S., Josse, J. & Husson, F. FactoMineR : An R package for multivariate analysis. J. Stat. Soft. 25, 1–18 (2008).

    Google Scholar 

  85. Wang, M. et al. Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat. Biotechnol. 34, 828–837 (2016).

    Google Scholar 

  86. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genom. Res. 13, 2498–2504 (2003).

    Google Scholar 

  87. Dührkop, K. et al. SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat. Methods 16, 299–302 (2019).

    Google Scholar 

  88. Jossen, V., Eibl, R., Pörtner, R., Kraume, M. & Eibl, D. In Current Developments in Biotechnology and Bioengineering (Elsevier), 179–215. (2017)

  89. Moo-Young, M. (ed.). Comprehensive biotechnology. Principles and practices in industry, agcriculture, medicine and the environment;1 – 6 (Elsevier, 2011).

  90. Li, C. et al. CFD analysis of the turbulent flow in baffled shake flasks. Biochem. Eng. J. 70, 140–150 (2013).

    Google Scholar 

  91. Maschke, R. W., John, G. T. & Eibl, D. Monitoring of Oxygen, pH, CO 2, and Biomass in Smart Single-Use Shake Flasks. Chemie Ingenieur Technik 94, 1995–2001 (2022).

    Google Scholar 

Download references