Multifunctional lactic acid bacteria from sugarcane juice with probiotic properties for gut adaptation, health benefits, food preservation and quality enhancement

multifunctional-lactic-acid-bacteria-from-sugarcane-juice-with-probiotic-properties-for-gut-adaptation,-health-benefits,-food-preservation-and-quality-enhancement
Multifunctional lactic acid bacteria from sugarcane juice with probiotic properties for gut adaptation, health benefits, food preservation and quality enhancement

References

  1. Hajela, N. et al. Gut microbiome, gut function, and probiotics: Implications for health. Indian J. Gastroenterol. 34, 93–107 (2015).

    Google Scholar 

  2. Di Sabatino, A., Santacroce, G., Rossi, C. M., Broglio, G. & Lenti, M. V. Role of mucosal immunity and epithelial–vascular barrier in modulating gut homeostasis. Intern. Emerg. Med. 18, 1635–1646 (2023).

    Google Scholar 

  3. Al-Fakhrany, O. M. & Elekhnawy, E. Next-generation probiotics: The upcoming biotherapeutics. Mol. Biol. Rep. 51, 505 (2024).

    Google Scholar 

  4. Ali, M. A. et al. Functional dairy products as a source of bioactive peptides and probiotics: Current trends and future prospectives. J. Food Sci. Technol. 59, 1263–1279 (2022).

    Google Scholar 

  5. Vasiee, A. R., Yazdi, T., Mortazavi, F. & Edalatian, M. R. A. Isolation, identification and characterization of probiotic Lactobacilli spp. from Tarkhineh. Inte. Food Res. J. 21 (2014).

  6. Vasiee, A., Falah, F., Behbahani, B. A. & Tabatabaee-Yazdi, F. Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. J. Biosci. Bioeng. 130, 471–479 (2020).

    Google Scholar 

  7. Vasiee, A., Falah, F. & Mortazavi, S. A. Evaluation of probiotic potential of autochthonous lactobacilli strains isolated from Zabuli yellow kashk, an Iranian dairy product. J. Appl. Microbiol. 133, 3201–3214 (2022).

    Google Scholar 

  8. Bisson, G., Maifreni, M., Innocente, N. & Marino, M. Application of pre-adaptation strategies to improve the growth of probiotic lactobacilli under food-relevant stressful conditions. Food Funct. 14, 2128–2137 (2023).

    Google Scholar 

  9. Hossain, T. J., Khan, M. S. & Ferdouse, J. Fermented and dairy beverages of Bangladesh: A rich source of probiotic lactic acid bacteria. Food Sci. Appl. Biotechnol. 7 (2024).

  10. Ferdouse, J. et al. Probiotic characteristics of Pediococcus pentosaceus and Apilactobacillus kunkeei strains: The lactic acid bacteria isolated from Bangladeshi Natural honey. Appl. Food Biotechnol. 10, 33–45 (2023).

    Google Scholar 

  11. de Melo Pereira, G. V., de Oliveira Coelho, B., Magalhães Júnior, A. I., Thomaz-Soccol, V. & Soccol, C. R. How to select a probiotic? A review and update of methods and criteria. Biotechnol. Adv. 36, 2060–2076 (2018).

    Google Scholar 

  12. Pato, U. et al. Comparison of probiotic properties between free cells and encapsulated cells of Limosilactobacillus fermentum InaCC B1295. AIMS Agric. Food 9, 483–499 (2024).

    Google Scholar 

  13. Pradhan, D., Mallappa, R. H. & Grover, S. Comprehensive approaches for assessing the safety of probiotic bacteria. Food Control 108, 106872 (2020).

    Google Scholar 

  14. Hossain, T. J. Functional genomics of the lactic acid bacterium Limosilactobacillus fermentum LAB-1: metabolic, probiotic and biotechnological perspectives. Heliyon 8, (2022).

  15. Tarannum, N. et al. Antioxidant, antimicrobial and emulsification properties of exopolysaccharides from lactic acid bacteria of bovine milk: Insights from biochemical and genomic analysis. LWT 186, 115263 (2023).

    Google Scholar 

  16. Chugh, B. & Kamal-Eldin, A. Bioactive compounds produced by probiotics in food products. Curr. Opin. Food Sci. 32, 76–82 (2020).

    Google Scholar 

  17. Sarika, A. R., Lipton, A. P. & Aishwarya, M. S. Biopreservative efficacy of bacteriocin GP1 of Lactobacillus rhamnosus GP1 on stored fish filets. Front. Nutr. 6 (2019).

  18. Hossain, T. J. et al. Hydrolytic exoenzymes produced by bacteria isolated and identified from the gastrointestinal tract of Bombay duck. Front. Microbiol. 11 (2020).

  19. Pompilio, A. et al. Cell-free supernatants from Lactobacillus strains exert antibacterial, antibiofilm, and antivirulence activity against Pseudomonas aeruginosa from cystic fibrosis patients. Microbes Infect. 26, 105301 (2024).

    Google Scholar 

  20. Hossain, T. J. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur. J. Microbiol. Immunol. https://doi.org/10.1556/1886.2024.00035 (2024).

    Google Scholar 

  21. Ali, F. et al. Production optimization, stability and oil emulsifying potential of biosurfactants from selected bacteria isolated from oil-contaminated sites. R. Soc. Open Sci. 8, 211003 (2021).

    Google Scholar 

  22. Zhang, Q. et al. In vitro investigation on lactic acid bacteria isolatedfrom Yak faeces for potential probiotics. Front. Cell. Infect. Microbiol. 12, 984537 (2022).

    Google Scholar 

  23. Aziz, T. et al. Assessing the probiotic potential, antioxidant, and antibacterial activities of oat and soy milk fermented with Lactiplantibacillus plantarum strains isolated from Tibetan Kefir. Front. Microbiol. 14, 1265188 (2023).

    Google Scholar 

  24. Zan, L. et al. Screening, characterization and probiotic properties of selenium-enriched lactic acid bacteria. Fermentation 10, 39 (2024).

    Google Scholar 

  25. Zommara, M., El-Ghaish, S., Haertle, T., Chobert, J.-M. & Ghanimah, M. Probiotic and technological characterization of selected Lactobacillus strains isolated from different Egyptian cheeses. BMC Microbiol. 23, 160 (2023).

    Google Scholar 

  26. Dowarah, R., Verma, A. K., Agarwal, N., Singh, P. & Singh, B. R. Selection and characterization of probiotic lactic acid bacteria and its impact on growth, nutrient digestibility, health and antioxidant status in weaned piglets. PLoS One 13, e0192978 (2018).

    Google Scholar 

  27. Rokana, N. et al. Screening of cell surface properties of potential probiotic lactobacilli isolated from human milk. J. Dairy Res. 85, 347–354 (2018).

    Google Scholar 

  28. Wang, J., Zhao, X., Yang, Y., Zhao, A. & Yang, Z. Characterization and bioactivities of an exopolysaccharide produced by Lactobacillus plantarum YW32. Int. J. Biol. Macromol. 74, 119–126 (2015).

    Google Scholar 

  29. Prabhurajeshwar, C. & Chandrakanth, R. K. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomed. J. 40, 270–283 (2017).

    Google Scholar 

  30. Mondal, H., Thomas, J. & Amaresan, N. Assay of Hemolytic Activity. In Aquaculture Microbiology (eds Thomas, J. & Amaresan, N.) 187–189 (Springer, 2023). https://doi.org/10.1007/978-1-0716-3032-7_24.

  31. Huligere, S. S. Isolation and characterization of lactic acid bacteria with potential probiotic activity and further investigation of their activity by α-amylase and α-glucosidase inhibitions of fermented batters. Front. Microbiol. https://doi.org/10.3389/fmicb.2022.1042263 (2023).

    Google Scholar 

  32. Yang, S. et al. Antimicrobial activity against Staphylococcus aureus and genome features of Lactiplantibacillus plantarum LR-14 from Sichuan pickles. Arch. Microbiol. 204, 637 (2022).

    Google Scholar 

  33. Pakroo, S. et al. Limosilactobacillus fermentum ING8, a potential multifunctional non-starter strain with relevant technological properties and antimicrobial activity. Foods 11, 703 (2022).

    Google Scholar 

  34. Falah, F. et al. Evaluation of adherence and anti-infective properties of probiotic Lactobacillus fermentum strain 4–17 against Escherichia coli causing urinary tract infection in humans. Microb. Pathog. 131, 246–253 (2019).

    Google Scholar 

  35. Vasiee, A., Alizadeh Behbahani, B., Tabatabaei Yazdi, F., Mortazavi, S. A. & Noorbakhsh, H. Diversity and probiotic potential of lactic acid bacteria isolated from Horreh, a traditional Iranian fermented food. Probiotics Antimicrob. Proteins 10, 258–268 (2018).

    Google Scholar 

  36. Popova-Krumova, P., Danova, S., Atanasova, N. & Yankov, D. Lactic Acid Production by Lactiplantibacillus plantarum AC 11S—Kinetics and Modeling. Microorganisms 12, 739 (2024).

  37. Racines, M. P. et al. An overview of the use and applications of limosilactobacillus fermentum in broiler chickens. Microorganisms 11, 1944 (2023).

    Google Scholar 

  38. Namshir, B. et al. Fermentation and functional properties of plant-derived Limosilactobacillus fermentum for dairy applications. Fermentation 11, 286 (2025).

    Google Scholar 

  39. dos Santos, C. I. et al. Genomic analysis of Limosilactobacillus fermentum ATCC 23271, a potential probiotic strain with anti-Candida activity. J. Fungi 7, 794 (2021).

    Google Scholar 

  40. Farhangfar, A., Gandomi, H., Akhondzadeh Basti, A., Misaghi, A. & Noori, N. Study of growth kinetic and gastrointestinal stability of acid-bile resistant Lactobacillus plantarum strains isolated from Siahmazgi traditional cheese. Vet. Res. Forum 12, 235–240 (2021).

    Google Scholar 

  41. Megur, A. In vitro screening and characterization of lactic acid bacteria from Lithuanian fermented food with potential probiotic properties. Front. Microbiol. https://doi.org/10.3389/fmicb.2023.1213370 (2023).

    Google Scholar 

  42. Irfan, H. et al. Functional genomics and probiotic traits of Lactiplantibacillus plantarum MB685 from fermented broccoli: Gut health and metabolic insights. Mol. Nutr. Food Res. e70209. https://doi.org/10.1002/mnfr.70209 (2025).

    Google Scholar 

  43. Domínguez-Avila, J. A. et al. Phenolic compounds promote diversity of gut microbiota and maintain colonic health. Dig. Dis. Sci. 66, 3270–3289 (2021).

    Google Scholar 

  44. Saito, Y., Sato, T., Nomoto, K. & Tsuji, H. Identification of phenol- and p-cresol-producing intestinal bacteria by using media supplemented with tyrosine and its metabolites. FEMS Microbiol. Ecol. 94, fiy125 (2018).

    Google Scholar 

  45. Yadav, R., Puniya, A. K. & Shukla, P. Probiotic Properties of Lactobacillus plantarum RYPR1 from an Indigenous Fermented Beverage Raabadi. Front Microbiol 7, (2016).

  46. Bezkorovainy, A. Probiotics: determinants of survival and growth in the gut123. Am. J. Clin. Nutr. 73, 399s–405s (2001).

    Google Scholar 

  47. Darmastuti, A. et al. Adhesion properties of Lactobacillus plantarum Dad-13 and Lactobacillus plantarum Mut-7 on Sprague Dawley rat intestine. Microorganisms 9, 2336 (2021).

    Google Scholar 

  48. Alizadeh Behbahani, B., Rahmati-Joneidabad, M. & Taki, M. Examining the impact of probiotic Lactiplantibacillus pentosus 6MMI on inhibiting biofilm formation, adhesion, and virulence gene expression in Listeria monocytogenes ATCC 19115. Biofilm 9, 100255 (2025).

    Google Scholar 

  49. Farid, W. et al. Gastrointestinal transit tolerance, cell surface hydrophobicity, and functional attributes of Lactobacillus acidophilus strains isolated from Indigenous Dahi. Food Sci. Nutr. 9, 5092–5102 (2021).

    Google Scholar 

  50. Suwannaphan, S. Isolation, identification and potential probiotic characterization of lactic acid bacteria from Thai traditional fermented food. AIMS Microbiol. 7, 431 (2021).

    Google Scholar 

  51. Pato, U., Yusuf, Y., Riftyan, E. & Rossi, E. Comparison of probiotic properties between free cells and encapsulated cells of Limosilactobacillus fermentum InaCC B1295. AIMS Agric. & Food 9, (2024).

  52. Sohn, H. et al. Probiotic properties of Lactiplantibacillus plantarum LB5 isolated from Kimchi based on nitrate reducing capability. Foods 9, 1777 (2020).

    Google Scholar 

  53. Noshad, M., Alizadeh Behbahani, B. & Hojjati, M. Investigation of probiotic and technological characteristics of lactic acid bacteria isolated from native Doogh of Behbahan. J. Food Res. 31, 169–186 (2021).

    Google Scholar 

  54. Abramov, V. M. et al. Limosilactobacillus fermentum 3872 that produces class III bacteriocin forms co-aggregates with the antibiotic-resistant Staphylococcus aureus strains and induces their lethal damage. Antibiotics 12, 471 (2023).

  55. Monteagudo-Mera, A., Rastall, R. A., Gibson, G. R., Charalampopoulos, D. & Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 103, 6463–6472 (2019).

    Google Scholar 

  56. Singha, S., Thomas, R., Viswakarma, J. N. & Gupta, V. K. Foodborne illnesses of Escherichia coli O157origin and its control measures. J. Food Sci. Technol. 60, 1274–1283 (2023).

    Google Scholar 

  57. Giudice, P. D. Skin infections caused by Staphylococcus aureus. Acta Derm. Venereol. 100, 208–215 (2020).

    Google Scholar 

  58. Hossain, T. J., Mozumder, H. A., Ali, F. & Akther, K. Inhibition of pathogenic microbes by the lactic acid bacteria Limosilactobacillus fermentum strain LAB-1 and Levilactobacillus brevis strain LAB-5 isolated from the dairy beverage Borhani. Current Research in Nutrition and Food Science Journal 10, 928–939 (2022).

    Google Scholar 

  59. Macias-Paz, I. U. et al. Candida albicans the main opportunistic pathogenic fungus in humans. Rev. Argent. Microbiol. 55, 189–198 (2023).

    Google Scholar 

  60. Mishra, B. et al. Antifungal metabolites as food bio-preservative: Innovation, outlook, and challenges. Metabolites 12, 12 (2021).

    Google Scholar 

  61. Che, J. et al. Elimination of pathogen biofilms via postbiotics from lactic acid bacteria: A promising method in food and biomedicine. Microorganisms 12, 704 (2024).

    Google Scholar 

  62. Jomova, K. et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 97, 2499–2574 (2023).

    Google Scholar 

  63. Abdul Hakim, B. N., Xuan, N. J. & Oslan, S. N. H. A Comprehensive review of bioactive compounds from lactic acid bacteria: Potential functions as functional food in dietetics and the food industry. Foods 12, 2850 (2023).

  64. Hu, Y. et al. Lactic acid bacteria with a strong antioxidant function isolated from Jiangshui, pickles, and feces. Front Microbiol 14, (2023).

  65. Sharma, C. et al. Antibiotic sensitivity pattern of indigenous lactobacilli isolated from curd and human milk samples. 3 Biotech 7, 53 (2017).

    Google Scholar 

  66. Stefańska, I. et al. Antimicrobial susceptibility of lactic acid bacteria strains of potential use as feed additives – the basic safety and usefulness criterion. Front. Vet. Sci. 8 (2021).

  67. Vinayamohan, P. G., Viju, L. S., Joseph, D. & Venkitanarayanan, K. Fermented foods as a potential vehicle of antimicrobial-resistant bacteria and genes. Fermentation 9, 688 (2023).

    Google Scholar 

  68. Sharma, P., Garg, N., Sharma, A., Capalash, N. & Singh, R. Nucleases of bacterial pathogens as virulence factors, therapeutic targets and diagnostic markers. Int. J. Med. Microbiol. 309, 151354 (2019).

    Google Scholar 

  69. Sato, T., Sulistyani, H., Kamaguchi, A., Miyakawa, H. & Nakazawa, F. Hemolysin of Prevotella oris: Purification and characteristics. J. Oral Biosci. 55, 149–154 (2013).

    Google Scholar 

  70. Liao, C., Mao, F., Qian, M. & Wang, X. Pathogen-derived nucleases: An effective weapon for escaping extracellular traps. Front. Immunol. 13 (2022).

  71. Skaar, E. P. The battle for iron between bacterial pathogens and their vertebrate hosts. PLOS Pathogens 6, e1000949 (2010).

    Google Scholar 

  72. Bittante, G., Penasa, M. & Cecchinato, A. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 95, 6843–6870 (2012).

    Google Scholar 

  73. Mende, S., Rohm, H. & Jaros, D. Influence of exopolysaccharides on the structure, texture, stability and sensory properties of yoghurt and related products. Int. Dairy J. 52, 57–71 (2016).

    Google Scholar 

  74. Natarajan, M., Babu, S. P. S., Balasubramanian, M., Ramachandran, R. & Jesteena, J. Bioactive exopolysaccharide from endophytic Bacillus thuringiensis SMJR inhibits food borne pathogens and enhances the shelf life of foods. Bioact. Carbohydr. Diet. Fibre 27, 100297 (2022).

    Google Scholar 

  75. Zapaśnik, A., Sokołowska, B. & Bryła, M. Role of lactic acid bacteria in food preservation and safety. Foods 11, 1283 (2022).

    Google Scholar 

  76. Korcz, E. & Varga, L. Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends Food Sci. Technol. 110, 375–384 (2021).

    Google Scholar 

  77. Ranathunga, N. S., Wijayasekara, K. N. & Abeyrathne, E. D. N. S. Application of bio-preservation to enhance food safety: A review. Korean J. Food Preserv. 30, 179–189 (2023).

    Google Scholar 

  78. K, M. et al. Antimicrobial property of probiotics. ECJ 22, 33–48 (2021).

    Google Scholar 

Download references