Nano-functionalized probiotic treats atherosclerosis via inhibiting intestinal microbiota-TMA-TMAO axis

nano-functionalized-probiotic-treats-atherosclerosis-via-inhibiting-intestinal-microbiota-tma-tmao-axis
Nano-functionalized probiotic treats atherosclerosis via inhibiting intestinal microbiota-TMA-TMAO axis

Data availability

All data supporting the findings in this study are available within the paper and its supplementary information. 16S RNA gene sequencing data generated in this study have been deposited in the NCBI’s Sequence Read Archive (SRA) under accession number PRJNA1250224. Metabolomics data generated in this study have been deposited in MetaboLights and are accessible through the accession number MTBLS12426. Source data is available for Figs. 2–7 and Supplementary Figs. 49, 11, 1317, 2028 in the associated source data file. Source data are provided with this paper.

References

  1. Libby, P. The changing landscape of atherosclerosis. Nature 592, 524–533 (2021).

    Google Scholar 

  2. Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Prim. 5, 56 (2019).

    Google Scholar 

  3. Kong, P. et al. Inflammation and atherosclerosis: signaling pathways and therapeutic intervention. Signal Transduct. Target Ther. 7, 131 (2022).

    Google Scholar 

  4. Zhu, Q. et al. Microenvironment-responsive coating for vascular stents to regulate coagulation-inflammation interaction and promote vascular recovery. Bioact. Mater. 48, 443–457 (2025).

    Google Scholar 

  5. Chunawala, Z. S. et al. Mortality in patients hospitalized with acute myocardial infarction without standard modifiable risk factors: the aric study community surveillance. J. Am. Heart Assoc. 12, e027851 (2023).

    Google Scholar 

  6. Figtree, G. A. & Vernon, S. T. Coronary artery disease patients without standard modifiable risk factors (SMuRFs)- a forgotten group calling out for new discoveries. Cardiovasc Res 117, e76–e78 (2021).

    Google Scholar 

  7. Ma, S. R. et al. Berberine treats atherosclerosis via a vitamine-like effect down-regulating Choline-TMA-TMAO production pathway in gut microbiota. Signal Transduct. Target Ther. 7, 207 (2022).

    Google Scholar 

  8. Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).

    Google Scholar 

  9. Koeth, R. A. et al. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat. Med 19, 576–585 (2013).

    Google Scholar 

  10. Seldin, M.M. et al. Trimethylamine N-Oxide Promotes Vascular Inflammation Through Signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J. Am. Heart Assoc. 5, 10.1161/JAHA.115.002767 (2016).

  11. Bennett, B. J. et al. Trimethylamine-N-oxide, a metabolite associated with atherosclerosis, exhibits complex genetic and dietary regulation. Cell Metab. 17, 49–60 (2013).

    Google Scholar 

  12. Craciun, S., Marks, J. A. & Balskus, E. P. Characterization of choline trimethylamine-lyase expands the chemistry of glycyl radical enzymes. ACS Chem. Biol. 9, 1408–1413 (2014).

    Google Scholar 

  13. Ross, F. C. et al. The interplay between diet and the gut microbiome: implications for health and disease. Nat. Rev. Microbiol 22, 671–686 (2024).

    Google Scholar 

  14. Yoo, W. et al. High-fat diet-induced colonocyte dysfunction escalates microbiota-derived trimethylamine N-oxide. Science 373, 813–818 (2021).

    Google Scholar 

  15. Wang, Z. et al. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur. Heart J. 40, 583–594 (2019).

    Google Scholar 

  16. Koeth, R. A. et al. l-Carnitine in omnivorous diets induces an atherogenic gut microbial pathway in humans. J. Clin. Invest 129, 373–387 (2019).

    Google Scholar 

  17. Kong, L. et al. Trimethylamine N-oxide impairs β-cell function and glucose tolerance. Nat. Commun. 15, 2526 (2024).

    Google Scholar 

  18. Dave, N. et al. Dietary choline intake is necessary to prevent systems-wide organ pathology and reduce Alzheimer’s disease hallmarks. Aging Cell 22, e13775 (2023).

    Google Scholar 

  19. Yu, D. et al. Higher dietary choline intake is associated with lower risk of nonalcoholic fatty liver in normal-weight Chinese women. J. Nutr. 144, 2034–2040 (2014).

    Google Scholar 

  20. Moretti, A. et al. Choline: an essential nutrient for skeletal muscle. Nutrients. 12, 10.3390/nu12072144 (2020).

  21. Motika, M. S., Zhang, J. & Cashman, J. R. Flavin-containing monooxygenase 3 and human disease. Expert Opin. Drug Metab. Toxicol. 3, 831–845 (2007).

    Google Scholar 

  22. Roberts, A. B. et al. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat. Med 24, 1407–1417 (2018).

    Google Scholar 

  23. Saadh, M. J. et al. Therapeutic potential of lipid-lowering probiotics on the atherosclerosis development. Eur. J. Pharm. 971, 176527 (2024).

    Google Scholar 

  24. Liu, W. et al. The Metabolite Indole-3-Acetic Acid of Bacteroides Ovatus Improves Atherosclerosis by Restoring the Polarisation Balance of M1/M2 Macrophages and Inhibiting Inflammation. Adv. Sci. (Weinh.) 12, e2413010 (2025).

    Google Scholar 

  25. Cao, F. et al. Artificial-enzymes-armed Bifidobacterium longum probiotics for alleviating intestinal inflammation and microbiota dysbiosis. Nat. Nanotechnol. 18, 617–627 (2023).

    Google Scholar 

  26. Lu, Y. et al. Gut microbe-derived metabolite indole-3-carboxaldehyde alleviates atherosclerosis. Signal Transduct. Target Ther. 8, 378 (2023).

    Google Scholar 

  27. Wang, K. et al. Mucoadhesive probiotic-based oral microcarriers with prolonged intestinal retention for inflammatory bowel disease therapy. Nano Today. 50, 10.1126/sciadv.abp8798 (2023).

  28. Ma, B. et al. Targeting theranostics of atherosclerosis by dual-responsive nanoplatform via photoacoustic imaging and three-in-one integrated lipid management. Adv Mater, e2206129 10.1002/adma.202206129 (2022).

  29. Dai, L. et al. A pH/ROS Cascade-Responsive Charge-Reversal Nanosystem with Self-Amplified Drug Release for Synergistic Oxidation-Chemotherapy. Adv. Sci. (Weinh.) 6, 1801807 (2019).

    Google Scholar 

  30. Saravanakumar, G., Kim, J. & Kim, W. J. Reactive-Oxygen-Species-Responsive Drug Delivery Systems: Promises and Challenges. Adv. Sci. (Weinh.) 4, 1600124 (2017).

    Google Scholar 

  31. Heavey, M. K. et al. Targeted delivery of the probiotic Saccharomyces boulardii to the extracellular matrix enhances gut residence time and recovery in murine colitis. Nat. Commun. 15, 3784 (2024).

    Google Scholar 

  32. Wang, M. et al. Trimethylamine N-oxide is associated with long-term mortality risk: the multi-ethnic study of atherosclerosis. Eur. Heart J. 44, 1608–1618 (2023).

    Google Scholar 

  33. Adolph, T. E. & Tilg, H. Western diets and chronic diseases. Nat. Med 30, 2133–2147 (2024).

    Google Scholar 

  34. Ma, B. et al. Biomimetic Targeting Nanoplatform for Atherosclerosis Theranostics Via Photoacoustic Diagnosis and “Hand-In-Hand” Immunoregulation. Advanced Functional Materials, 111009 (2023).

  35. Ma, B. et al. Reactive Oxygen Species Responsive Theranostic Nanoplatform for Two-Photon Aggregation-Induced Emission Imaging and Therapy of Acute and Chronic Inflammation. ACS Nano, 10.1016/j.isci.2024.111009 (2020).

  36. Wang, Y. et al. A thrombin-triggered self-regulating anticoagulant strategy combined with anti-inflammatory capacity for blood-contacting implants. Sci. Adv. 8, eabm3378 (2022).

    Google Scholar 

  37. Luo, Y. et al. Precise oral delivery systems for probiotics: A review. J. Control Release 352, 371–384 (2022).

    Google Scholar 

  38. Guo, P. et al. Engineered probiotic ameliorates ulcerative colitis by restoring gut microbiota and redox homeostasis. Cell Host Microbe 32, 1502–1518.e9 (2024).

    Google Scholar 

  39. Otani, T. & Furuse, M. Tight junction structure and function revisited. Trends Cell Biol. 30, 805–817 (2020).

    Google Scholar 

  40. Benson, T. W. et al. Gut microbiota-derived trimethylamine n-oxide contributes to abdominal aortic aneurysm through inflammatory and apoptotic mechanisms. Circulation 147, 1079–1096 (2023).

    Google Scholar 

  41. Suntornsaratoon, P. et al. Lactobacillus rhamnosus gg stimulates dietary tryptophan-dependent production of barrier-protecting methylnicotinamide. Cell Mol. Gastroenterol. Hepatol. 18, 101346 (2024).

    Google Scholar 

  42. Miao, J. et al. Flavin-containing monooxygenase 3 as a potential player in diabetes-associated atherosclerosis. Nat. Commun. 6, 6498 (2015).

    Google Scholar 

  43. Chen, M. L. et al. Resveratrol Attenuates Trimethylamine-N-Oxide (TMAO)-Induced Atherosclerosis by Regulating TMAO Synthesis and Bile Acid Metabolism via Remodeling of the Gut Microbiota. mBio 7, e02210-15 (2016).

    Google Scholar 

  44. Ding, H. et al. Protocatechuic acid alleviates TMAO-aggravated atherosclerosis via mitigating inflammation, regulating lipid metabolism, and reshaping gut microbiota. Food Funct. 15, 881–893 (2024).

    Google Scholar 

  45. Lin, X. et al. Isolation of potentially novel species expands the genomic and functional diversity of Lachnospiraceae. Imeta 3, e174 (2024).

    Google Scholar 

  46. Grisham, M. B. Oxidants and free radicals in inflammatory bowel disease. Lancet 344, 859–861 (1994).

    Google Scholar 

  47. Petersen, C. et al. T cell-mediated regulation of the microbiota protects against obesity. Science. 365, eaat9351 (2019).

  48. Liu, F. et al. Millet shell polyphenols prevent atherosclerosis by protecting the gut barrier and remodeling the gut microbiota in ApoE(−/−) mice. Food Funct. 12, 7298–7309 (2021).

    Google Scholar 

  49. Yang, J. et al. Oscillospira – a candidate for the next-generation probiotics. Gut Microbes 13, 1987783 (2021).

    Google Scholar 

  50. Li, C. et al. Gut microbiome and metabolome profiling in Framingham heart study reveals cholesterol-metabolizing bacteria. Cell 187, 1834–1852.e19 (2024).

    Google Scholar 

  51. Liu, H. et al. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome 7, 68 (2019).

    Google Scholar 

  52. Kasahara, K. et al. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat. Microbiol 3, 1461–1471 (2018).

    Google Scholar 

  53. Gaillard, T., Schuster, D. & Osei, K. Differential impact of serum glucose, triglycerides, and high-density lipoprotein cholesterol on cardiovascular risk factor burden in nondiabetic, obese African American women: implications for the prevalence of metabolic syndrome. Metabolism 59, 1115–1123 (2010).

    Google Scholar 

  54. Costa, M. C. et al. Trigonelline and curcumin alone, but not in combination, counteract oxidative stress and inflammation and increase glycation product detoxification in the liver and kidney of mice with high-fat diet-induced obesity. J. Nutr. Biochem 76, 108303 (2020).

    Google Scholar 

  55. Casale, M. et al. Topical Ectoine: A promising molecule in the upper airways inflammation-a systematic review. Biomed. Res Int 2019, 7150942 (2019).

    Google Scholar 

  56. Kadam, P. et al. Recent advances in production and applications of ectoine, a compatible solute of industrial relevance. Bioresour. Technol. 393, 130016 (2024).

    Google Scholar 

  57. Vangaveti, V., Baune, B. T. & Kennedy, R. L. Hydroxyoctadecadienoic acids: novel regulators of macrophage differentiation and atherogenesis. Ther. Adv. Endocrinol. Metab. 1, 51–60 (2010).

    Google Scholar 

  58. Duan, J. et al. Senescence-associated 13-HODE production promotes age-related liver steatosis by directly inhibiting catalase activity. Nat. Commun. 14, 8151 (2023).

    Google Scholar 

  59. Levan, S. R. et al. Elevated faecal 12,13-diHOME concentration in neonates at high risk for asthma is produced by gut bacteria and impedes immune tolerance. Nat. Microbiol 4, 1851–1861 (2019).

    Google Scholar 

  60. Kumar, N. et al. 15-Lipoxygenase metabolites of α-linolenic acid, [13-(S)-HPOTrE and 13-(S)-HOTrE], mediate anti-inflammatory effects by inactivating NLRP3 inflammasome. Sci. Rep 6, 31649 (2016).

    Google Scholar 

Download references

Acknowledgements

This research was financially supported by Noncommunicable Chronic Diseases-National Science and Technology Major Project (grant number 2023ZD0503904 to W.Z.), National Natural Science Foundation of China (grant number 32201128 to B.M., grant number 82270262 to W.Z., grant number 32301100 to Yanan Wang), Zhejiang TCM Science and Technology Program TCM modernization special project, China (grant number 2022ZX012 to G.F.), Natural Science Funds of Zhejiang Province, China (grant number ZCLY24H1801 to B.M.). The schematic figures were created with BioRender.com. We thank Xiaoli Hong from the Core Facilities, Zhejiang University School of Medicine, for their technical support.

Author information

Author notes

  1. These authors contributed equally: Zhezhe Chen, Qiongjun Zhu.

Authors and Affiliations

  1. Department of Cardiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China

    Zhezhe Chen, Qiongjun Zhu, Yanan Wang, Zhebin Chen, Yao Wang, Guosheng Fu, Boxuan Ma & Wenbin Zhang

  2. Zhejiang Key Laboratory of Cardiovascular Intervention and Precision Medicine, Hangzhou, China

    Zhezhe Chen, Qiongjun Zhu, Yanan Wang, Zhebin Chen, Yao Wang, Guosheng Fu, Boxuan Ma & Wenbin Zhang

  3. Engineering Research Center for Cardiovascular Innovative Devices of Zhejiang Province, Hangzhou, China

    Zhezhe Chen, Qiongjun Zhu, Yanan Wang, Zhebin Chen, Yao Wang, Guosheng Fu, Boxuan Ma & Wenbin Zhang

  4. National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China

    Hong Xu

  5. Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China

    Yiqing Hu

  6. School of Electronic Engineering and Computer Science, Queen Mary University of London, London, UK

    Xingru Huang

Authors

  1. Zhezhe Chen
  2. Qiongjun Zhu
  3. Hong Xu
  4. Yiqing Hu
  5. Yanan Wang
  6. Zhebin Chen
  7. Yao Wang
  8. Xingru Huang
  9. Guosheng Fu
  10. Boxuan Ma
  11. Wenbin Zhang

Contributions

All authors have read and approved the manuscript. Z.C. (Zhezhe Chen) and B.M. conceived and designed the study. Z.C. (Zhezhe Chen), Q.Z., H.X. and B.M. performed the experiments. H.X. and B.M. synthesized and prepared the nanoparticles. Z.C. (Zhezhe Chen), Y.H. and X.H. analyzed the microbiome and metabolomics data. Y.W. (Yanan Wang), Z.C. (Zhebin Chen), and Y.W. (Yao Wang) assisted in the experiments and drew the figures. Z.C. (Zhezhe Chen) and B.M. wrote the manuscript. G.F., B.M. and W.Z. revised the manuscript and supervised this study.

Corresponding authors

Correspondence to Guosheng Fu, Boxuan Ma or Wenbin Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Communications thanks Jianxiang Zhang, Ahmad Ud Din and Ricardo Fernandes for their contribution to the peer review of this work. [A peer review file is available.]

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Source data

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Zhu, Q., Xu, H. et al. Nano-functionalized probiotic treats atherosclerosis via inhibiting intestinal microbiota-TMA-TMAO axis. Nat Commun (2025). https://doi.org/10.1038/s41467-025-66448-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41467-025-66448-7