Nanosensors for real-time intracellular analytics

nanosensors-for-real-time-intracellular-analytics
Nanosensors for real-time intracellular analytics
  • Liu, Z. & Zhang, Z. Mapping cell types across human tissues. Science 376, 695–696 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Yamanaka, S. Pluripotent stem cell-based cell therapy—promise and challenges. Cell Stem Cell 27, 523–531 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Qiu, S. et al. Small molecule metabolites: discovery of biomarkers and therapeutic targets. Signal Transduct. Target. Ther. 8, 132 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  • Rad, M. S., Cohen, L. B., Braubach, O. & Baker, B. J. Monitoring voltage fluctuations of intracellular membranes. Sci. Rep. 8, 6911 (2018).

    Article  Google Scholar 

  • Zhou, C., Zhao, W.-x., You, F.-t., Geng, Z.-x. & Peng, H.-s. Highly stable and luminescent oxygen nanosensor based on ruthenium-containing metallopolymer for real-time imaging of intracellular oxygenation. ACS Sens. 4, 984–991 (2019).

    Article  CAS  PubMed  Google Scholar 

  • He, C., Lu, K. & Lin, W. Nanoscale metal–organic frameworks for real-time intracellular pH sensing in live cells. J. Am. Chem. Soc. 136, 12253–12256 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Ogorevc, B. & Wang, J. Solid-state pH nanoelectrode based on polyaniline thin film electrodeposited onto ion-beam etched carbon fiber. Anal. Chim. Acta 452, 1–10 (2002).

    Article  CAS  Google Scholar 

  • Soldà, A. et al. Glucose and lactate miniaturized biosensors for SECM-based high-spatial resolution analysis: a comparative study. ACS Sens. 2, 1310–1318 (2017). This study develops miniaturized enzymatic glucose and lactate biosensors using Pt ultramicroelectrodes and enzyme immobilization to enhance the sensitivity and spatial resolution for monitoring metabolic activity at the single-cell level with SECM.

    Article  PubMed  Google Scholar 

  • Yuan, X. et al. Versatile live-cell activity analysis platform for characterization of neuronal dynamics at single-cell and network level. Nat. Commun. 11, 4854 (2020). This study presents a dual-mode high-density microelectrode array platform that enables long-term, label-free electrophysiological imaging of neuronal cultures at subcellular, single-cell, and network levels, integrating full-frame (19,584 electrodes) and high-SNR (246 channels) recording modes to support high-throughput analysis of neuronal dynamics.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung, H. S. et al. CMOS electrochemical pH localizer-imager. Sci. Adv. 8, eabm6815 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  • Cools, J. et al. 3D microstructured carbon nanotube electrodes for trapping and recording electrogenic cells. Adv. Funct. Mater. 27, 1701083 (2017).

    Article  Google Scholar 

  • Zhou, X.-L., Yang, Y., Wang, S. & Liu, X.-W. Surface plasmon resonance microscopy: from single-molecule sensing to single-cell imaging. Angew. Chem. 132, 1792–1801 (2020).

    Article  Google Scholar 

  • Tanaka, H. et al. Potassium ion dynamics imaging through supported lipid bilayers with surface plasmon resonance microscopy. ACS Photonics 9, 3412–3420 (2022).

    Article  CAS  Google Scholar 

  • Shinohara, H., Sakai, Y. & Mir, T. A. Real-time monitoring of intracellular signal transduction in PC12 cells by two-dimensional surface plasmon resonance imager. Anal. Biochem. 441, 185–189 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Nascimento, R. A. S. et al. Single cell “glucose nanosensor” verifies elevated glucose levels in individual cancer cells. Nano Lett. 16, 1194–1200 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, X., Dunevall, J. & Ewing, A. G. Quantitative chemical measurements of vesicular transmitters with electrochemical cytometry. Acc. Chem. Res. 49, 2347–2354 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Hu, K., Vo, K. L. L., Hatamie, A. & Ewing, A. G. Quantifying intracellular single vesicular catecholamine concentration with open carbon nanopipettes to unveil the effect of L-DOPA on vesicular structure. Angew. Chem. 134, e202113406 (2022).

    Article  Google Scholar 

  • Xie, C., Lin, Z., Hanson, L., Cui, Y. & Cui, B. Intracellular recording of action potentials by nanopillar electroporation. Nat. Nanotechnol. 7, 185–190 (2012). This study demonstrates the use of vertically aligned nanopillar electrodes to achieve long-term, high-fidelity intracellular and extracellular recordings of cardiomyocyte action potentials by forming tight membrane–electrode junctions and enabling reversible, localized electroporation to significantly reduce cell–electrode impedance, enabling the sensitive pharmacological analysis of ion channel activity.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahed, Z. et al. Nanocrown electrodes for parallel and robust intracellular recording of cardiomyocytes. Nat. Commun. 13, 2253 (2022). This study develops semi-hollow nanocrown electrodes for intracellular action potential recordings, enablingparallel and long-term recording in a minimally invasive manner.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abbott, J. et al. A nanoelectrode array for obtaining intracellular recordings from thousands of connected neurons. Nat. Biomed. Eng. 4, 232–241 (2019). This study presents a CMOS-based, massively parallel intracellular recording system integrating 4,096 vertical nanoelectrode sites, enabling the high-resolution measurement of chemical synapse characteristics and large-scale mapping of synaptic connectivity across neuronal networks.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, R. et al. Ultra-sharp nanowire arrays natively permeate, record, and stimulate intracellular activity in neuronal and cardiac networks. Adv. Funct. Mater. 32, 2108378 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Spira, M. E., Shmoel, N., Huang, S.-H. M. & Erez, H. Multisite attenuated intracellular recordings by extracellular multielectrode arrays, a perspective. Front. Neurosci. 12, 212 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  • Desbiolles, B. X. E., de Coulon, E., Bertsch, A., Rohr, S. & Renaud, P. Intracellular recording of cardiomyocyte action potentials with nanopatterned volcano-shaped microelectrode arrays. Nano Lett. 19, 6173–6181 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017). This study introduces a scalable 3D field-effect transistor array platform for the accurate, minimally invasive recording of transmembrane potentials, enabling high-resolution measurements of intracellular signal conduction in cardiomyocytes and cardiac tissue constructs.

    Article  CAS  PubMed  Google Scholar 

  • Gu, Y. et al. Three-dimensional transistor arrays for intra- and inter-cellular recording. Nat. Nanotechnol. 17, 292–300 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Hanif, S. et al. Organic cyanide decorated SERS active nanopipettes for quantitative detection of hemeproteins and Fe3+ in single cells. Anal. Chem. 89, 2522–2530 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Lussier, F. et al. Dynamic-SERS optophysiology: a nanosensor for monitoring cell secretion events. Nano Lett. 16, 3866–3871 (2016).

    Article  CAS  PubMed  Google Scholar 

  • Yan, R. et al. Nanowire-based single-cell endoscopy. Nat. Nanotechnol. 7, 191–196 (2012).

    Article  CAS  Google Scholar 

  • Rotenberg, M. Y. et al. Silicon nanowires for intracellular optical interrogation with subcellular resolution. Nano Lett. 20, 1226–1232 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shibata, T. et al. Photocatalytic nanofabrication and intracellular Raman imaging of living cells with functionalized AFM probes. Micromachines 11, 495 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Ichikawa, T. et al. Protocol for live imaging of intracellular nanoscale structures using atomic force microscopy with nanoneedle probes. STAR Protoc. 4, 102468 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Penedo, M. et al. Visualizing intracellular nanostructures of living cells by nanoendoscopy-AFM. Sci. Adv. 7, eabj4990 (2023).

    Article  Google Scholar 

  • Ding, H., Su, B. & Jiang, D. Recent advances in single cell analysis by electrochemiluminescence. ChemistryOpen 12, e202200113 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H. et al. Electrochemiluminescence-microscopy for microRNA imaging in single cancer cell combined with chemotherapy-photothermal therapy. Anal. Chem. 91, 12581–12586 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Zhou, X. et al. A new highly selective fluorescent K+ sensor. J. Am. Chem. Soc. 133, 18530–18533 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iamshanova, O., Mariot, P., Lehen’kyi, V. & Prevarskaya, N. Comparison of fluorescence probes for intracellular sodium imaging in prostate cancer cell lines. Eur. Biophys. J. 45, 765–777 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grienberger, C. & Konnerth, A. Imaging calcium in neurons. Neuron 73, 862–885 (2012).

    Article  CAS  PubMed  Google Scholar 

  • Li, P. et al. A near-infrared-emitting fluorescent probe for monitoring mitochondrial pH. Chem. Commun. 50, 7184–7187 (2014).

    Article  CAS  Google Scholar 

  • Mita, M. et al. Green fluorescent protein-based glucose indicators report glucose dynamics in living cells. Anal. Chem. 91, 4821–4830 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Tang, J. et al. Noninvasive and highly selective monitoring of intracellular glucose via a two-step recognition-based nanokit. Anal. Chem. 89, 8319–8327 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Li, L. et al. Simultaneous quantitation of Na+ and K+ in single normal and cancer cells using a new near-infrared fluorescent probe. Anal. Chem. 87, 6057–6063 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Choe, M. & Titov, D. V. Genetically encoded tools for measuring and manipulating metabolism. Nat. Chem. Biol. 18, 451–460 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, J. et al. Motion-based DNA detection using catalytic nanomotors. Nat. Commun. 1, 36 (2010).

    Article  PubMed  Google Scholar 

  • Yu, X., Li, Y., Wu, J. & Ju, H. Motor-based autonomous microsensor for motion and counting immunoassay of cancer biomarker. Anal. Chem. 86, 4501–4507 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian, S. et al. Micromachine-enabled capture and isolation of cancer cells in complex media. Angew. Chem. Int. Ed. 50, 4161–4164 (2011).

    Article  CAS  Google Scholar 

  • Esteban-Fernández de Ávila, B. et al. Single cell real-time miRNAs sensing based on nanomotors. ACS Nano 9, 6756–6764 (2015).

    Article  PubMed  Google Scholar 

  • Pal, M. et al. Helical nanobots as mechanical probes of intra- and extracellular environments. J. Phys. Condens. Matter 32, 224001 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Hurt, R. C. et al. Genomically mined acoustic reporter genes for real-time in vivo monitoring of tumors and tumor-homing bacteria. Nat. Biotechnol. 41, 919–931 (2023). This study develops improved acoustic reporter genes that offer enhanced ultrasound contrast and stable in vivo expression for the non-invasive imaging of tumour colonization and gene expression.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joy, B., Cai, Y., Bono, D. C. & Sarkar, D. Cell Rover—a miniaturized magnetostrictive antenna for wireless operation inside living cells. Nat. Commun. 13, 5210 (2022). This study introduces the Cell Rover, a magnetic antenna that is capable of wirelessly operating inside living cells, providing a platform for advanced intracellular sensing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gómez-Martínez, R. et al. Silicon chips detect intracellular pressure changes in living cells. Nat. Nanotechnol. 8, 517–521 (2013). This study presents a silicon chip internalized into living cells, enabling the direct measurement of intracellular pressure changes in a minimally invasive manner.

    Article  PubMed  Google Scholar 

  • Airaghi Leccardi, M. J. I. et al. Light-induced rolling of azobenzene polymer thin films for wrapping subcellular neuronal structures. Commun. Chem. 7, 249 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahmani, K. et al. Intelligent in-cell electrophysiology: reconstructing intracellular action potentials using a physics-informed deep learning model trained on nanoelectrode array recordings. Nat. Commun. 16, 657 (2025). This study develops a physics-informed deep learning model to reconstruct intracellular action potentials from extracellular recordings on nanoelectrode and microelectrode arrays, enabling high-throughput, non-invasive electrophysiology for cardiotoxicity assessments without direct internalization of the probe for sensing.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krumm, A. & Carey, C. Real-time monitoring of cellular metabolic activity: intracellular oxygen. Nat. Methods 13, i–ii (2016).

    Article  Google Scholar 

  • Hu, Q. et al. Genetically encoded biosensors for evaluating NAD+/NADH ratio in cytosolic and mitochondrial compartments. Cell Rep. Methods 1, 100116 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giorgio, M., Trinei, M., Migliaccio, E. & Pelicci, P. G. Hydrogen peroxide: A metabolic by-product or a common mediator of ageing signals?. Nat. Rev. Mol. Cell Biol. 9, 722–728 (2007).

    Article  Google Scholar 

  • Shu, Y. et al. Isolated cobalt atoms on N-doped carbon as nanozymes for hydrogen peroxide and dopamine detection. ACS Appl. Nano Mater. 4, 7954–7962 (2021).

    Article  CAS  Google Scholar 

  • Jaworska, A., Malek, K. & Kudelski, A. Intracellular pH – advantages and pitfalls of surface-enhanced Raman scattering and fluorescence microscopy – a review. Spectrochim. Acta A Mol. Biomol. Spectrosc. 251, 119410 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Yu, X.-M., Groveman, B. R., Fang, X.-Q. & Lin, S.-X. The role of intracellular sodium (Na+) in the regulation of calcium (Ca2+)-mediated signaling and toxicity. Health (Irvine Calif.). 2, 8–15 (2010).

    PubMed  PubMed Central  Google Scholar 

  • Shi, X.-M. et al. A supersmall single-cell nanosensor for intracellular K+ detection. CCS Chem. 3, 2359–2367 (2021).

    Article  CAS  Google Scholar 

  • Bootman, M. D. & Bultynck, G. Fundamentals of cellular calcium signaling: a primer. Cold Spring Harb. Perspect. Biol. 12, a038802 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shindo, Y., Yamanaka, R., Suzuki, K., Hotta, K. & Oka, K. Intracellular magnesium level determines cell viability in the MPP+ model of Parkinson’s disease. Biochim. Biophys. Acta Mol. Cell Res. 1853, 3182–3191 (2015).

    Article  CAS  Google Scholar 

  • Stauber, T. & Jentsch, T. J. Chloride in vesicular trafficking and function. Annu. Rev. Physiol. 75, 453–477 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Bergwitz, C. & Jüppner, H. Phosphate sensing. Adv. Chronic Kidney Dis. 18, 132–144 (2011).

    Article  PubMed  PubMed Central  Google Scholar