References
-
Abdelaleem, E. R. et al. NS3 helicase inhibitory potential of the marine sponge Spongia irregularis. RSC Adv 12, 2992–3002. https://doi.org/10.1039/d1ra08321j (2022).
-
Shady, N. H. et al. Hepatitis C Virus NS3 Protease and Helicase Inhibitors from Red Sea Sponge (Amphimedon) Species in Green Synthesized Silver Nanoparticles Assisted by in Silico Modeling and Metabolic Profiling. Int J Nanomedicine 15, 3377–3389. https://doi.org/10.2147/IJN.S233766 (2020).
-
Said, A. A. E. et al. NS3/4A helicase inhibitory alkaloids from Aptenia cordifolia as HCV target. RSC Adv. 11, 32740–32749. https://doi.org/10.1039/D1RA06139A (2021).
-
Di Stasio, D. et al. Hepatitis C Virus (HCV) infection: Pathogenesis, oral manifestations, and the Role of Direct-Acting Antiviral therapy: A Narrative review. Journal of Clinical Medicine 13 (2024).
-
Inzaule, S. et al. Prevalence of Drug Resistance Associated Substitutions in Persons With Chronic Hepatitis C Infection and Virological Failure Following Initial or Re-treatment With Pan-genotypic Direct-Acting Antivirals: A Systematic Review and Meta-analysis. Clin. Infect. Dis. 79, 1437–1446. https://doi.org/10.1093/cid/ciae431 (2024).
-
Stanciu, C. et al. An update on direct antiviral agents for the treatment of hepatitis C. Expert Opin. Pharmacother. 22, 1729–1741 (2021).
-
Stanciu, C. & Trifan, A. Hepatitis C virus treatment revolution: Eastern European story. Hepat. Mon. 15, e28969 (2015).
-
Elberry, M. H., Darwish, N. H. & Mousa, S. A. Hepatitis C virus management: Potential impact of nanotechnology. Virology Journal 14, 1–10 (2017).
-
Gamkrelidze, I. et al. Progress towards hepatitis C virus elimination in high-income countries: An updated analysis. Liver Int. 41, 456–463 (2021).
-
Singh, L., Kruger, H. G., Maguire, G. E., Govender, T. & Parboosing, R. The role of nanotechnology in the treatment of viral infections. Therapeutic advances in infectious disease 4, 105–131 (2017).
-
Abd Ellah, N. H., Tawfeek, H. M., John, J. & Hetta, H. F. Nanomedicine as a future therapeutic approach for Hepatitis C virus. Nanomedicine 14, 1471–1491 (2019).
-
Singh, U. et al. Cyanometabolites: Molecules with immense antiviral potential. Arch. Microbiol. 205, 164 (2023).
-
Nair, S. & Bhimba, B. V. Bioactive potency of cyanobacteria Oscillatoria spp. Int J Pharm Pharm Sci 5, 611–612 (2013).
-
Elsayed, K. N. M., Kolesnikova, T. A., Noke, A. & Klock, G. Imaging the accumulated intracellular microalgal lipids as a response to temperature stress. 3 Biotech 7, 41, https://doi.org/10.1007/s13205-017-0677-x (2017).
-
Touliabah, H. E. & Refaay, D. A. Enhancement of Anticancer, Antibacterial, and Acetylcholinesterase Inhibition Activities from Oscillatoria sancta under Starvation Conditions. Water 15, 664. https://doi.org/10.3390/w15040664 (2023).
-
KP, D. D. & Thajudin, N. Biofilm inhibitory potential of Oscillatoria tenuis against Candida albicans. Deepa KP, Thajuddin N. Biofilm inhibitory potential of Oscillatoria tenuis against Candida albicans. Plant Science Today 10, 422–429, 10.14719/ (2023).
-
Haris, M. et al. Oscillatoria limnetica mediated green synthesis of iron oxide (Fe2O3) nanoparticles and their diverse in vitro bioactivities. Molecules 28, 2091 (2023).
-
Bishoyi, A. K., Mandhata, C. P., Sahoo, C. R., Paidesetty, S. K. & Padhy, R. N. Nanosynthesis, phycochemical constituents, and pharmacological properties of cyanobacterium Oscillatoria sp. Naunyn-Schmiedeberg’s Arch. Pharmacol. 397, 1347–1375 (2024).
-
Nainangu, P. et al. In vitro screening of antimicrobial, antioxidant, cytotoxic activities, and characterization of bioactive substances from freshwater cyanobacteria Oscillatoria sp. SSCM01 and Phormidium sp. SSCM02. Biocatalysis and Agricultural Biotechnology 29, 101772, https://doi.org/10.1016/j.bcab.2020.101772 (2020).
-
Pang, Y., Xu, H. & Pei, H. Using N-TiO2 to enhance the coagulation of Oscillatoria sp. and subsequently degrade cells and their metabolites in sludge under visible light. Journal of Water Process Engineering 53, 103666, https://doi.org/10.1016/j.jwpe.2023.103666 (2023).
-
Parida, S., Dash, S., Sahoo, B. & Rath, B. Assessment of Antimicrobial and Antioxidant Potential of Oscillatoria sancta and Oscillatoria proteus Isolated from Chilika Lake. Curr. Microbiol. 81, 46 (2024).
-
Zainuddin, E. N., Mundt, S., Wegner, U. & Mentel, R. Cyanobacteria a potential source of antiviral substances against influenza virus. Med Microbiol Immunol 191, 181–182. https://doi.org/10.1007/s00430-002-0142-1 (2002).
-
Borah, D. et al. A facile green synthesis route to silver nanoparticles using cyanobacterium Nostoc carneum and its photocatalytic, antibacterial and anticoagulative activity. Materials Today Communications 34, 105110 (2023).
-
Deyab, M., Mofeed, J., El-Bilawy, E. & Ward, F. Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Arch Microbiol 202, 213–223. https://doi.org/10.1007/s00203-019-01734-9 (2020).
-
Mazur-Marzec, H., Cegłowska, M., Konkel, R. & Pyrć, K. Antiviral cyanometabolites—a review. Biomolecules 11, 474 (2021).
-
Deyab, M., Mofeed, J., El-Bilawy, E. & Ward, F. Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Arch. Microbiol. 202, 213–223 (2020).
-
Agu, I., José, I. R. & Díaz-Muñoz, S. L. Influenza A defective viral genome production is altered by metabolites, metabolic signaling molecules, and cyanobacteria extracts. bioRxiv, 10.1101%2F2024.07.04.602134 (2024).
-
Nazmul, T. et al. Capture and neutralization of SARS-CoV-2 and influenza virus by algae-derived lectins with high-mannose and core fucose specificities. Microbiol. Immunol. 67, 334–344 (2023).
-
Ali, A. A., Maher, F. T. & Al-Bajari, S. A. Green biosynthesis of silver nanoparticles from Taraxacum officinale roots plant and studying its antiviral properties to coronavirus (SARS-CoV-2) infected lung cells. Journal of Hygienic Engineering & Design 42 (2023).
-
Kulkarni, N. & Muddapur, U. Biosynthesis of metal nanoparticles: A review. Journal of Nanotechnology 2014, 510246. https://doi.org/10.1155/2014/510246 (2014).
-
Bishoyi, A. K., Mandhata, C. P., Sahoo, C. R., Paidesetty, S. K. & Padhy, R. N. Nanosynthesis, phycochemical constituents, and pharmacological properties of cyanobacterium Oscillatoria sp. Naunyn Schmiedebergs Arch Pharmacol 397, 1347–1375. https://doi.org/10.1007/s00210-023-02719-8 (2024).
-
Omar, R. et al. The contribution of cyanobacteria in the development of nanobiotechnology: A mini-review. International Aquatic Research, -, https://doi.org/10.22034/iar.2024.2006079.1593 (2024).
-
Dhaka, A., Mali, S. C., Sharma, S. & Trivedi, R. A review on biological synthesis of silver nanoparticles and their potential applications. Results in Chemistry, 101108 (2023).
-
Sharif, M. S. et al. Biofabrication of Fe(3)O(4) Nanoparticles from Spirogyra hyalina and Ajuga bracteosa and Their Antibacterial Applications. Molecules 28, 3403. https://doi.org/10.3390/molecules28083403 (2023).
-
Altammar, K. A. A review on nanoparticles: Characteristics, synthesis, applications, and challenges. Front. Microbiol. 14, 1155622. https://doi.org/10.3389/fmicb.2023.1155622 (2023).
-
Nguyen, N. P. U., Dang, N. T., Doan, L. & Nguyen, T. T. H. Synthesis of silver nanoparticles: From conventional to ‘modern’methods—a review. Processes 11, 2617. https://doi.org/10.3390/pr11092617 (2023).
-
Ali, A. A., Maher, F. T. & Al-Bajari, S. A. Green biosynthesis of silver nanoparticles from Taraxacum officinale roots plant and studying its antiviral properties to coronavirus (SARS-CoV-2) infected lung cells. Journal of Hygienic Engineering & Design 42, 361–369 (2023).
-
Rizwana, H. et al. Green biosynthesis of silver nanoparticles using Vaccinium oxycoccos (Cranberry) extract and evaluation of their biomedical potential. Crystals 13, 294. https://doi.org/10.3390/cryst13020294 (2023).
-
Fathy, W. et al. Biosynthesis of silver nanoparticles from synechocystis sp to be used as a flocculant agent with different microalgae strains. Current Nanomaterials 5, 175–187. https://doi.org/10.2174/2468187310999200605161200 (2020).
-
Vijayaram, S. et al. Applications of green synthesized metal nanoparticles—a review. Biol. Trace Elem. Res. 202, 360–386 (2024).
-
Kamal, M. et al. In vitro assessment of antimicrobial, anti-inflammatory, and schistolarvicidal activity of macroalgae-based gold nanoparticles. Front. Mar. Sci. 9, 1075832. https://doi.org/10.3389/fmars.2022.1075832 (2022).
-
Azmy, L. et al. Antimicrobial Activity of Arthrospira platensis-Mediated Gold Nanoparticles against Streptococcus pneumoniae: A Metabolomic and Docking Study. Int. J. Mol. Sci. 25, 10090. https://doi.org/10.3390/ijms251810090 (2024).
-
Terefe, E. M. & Ghosh, A. Molecular Docking, Validation, Dynamics Simulations, and Pharmacokinetic Prediction of Phytochemicals Isolated From Croton dichogamus Against the HIV-1 Reverse Transcriptase. Bioinform Biol Insights 16, 11779322221125604. https://doi.org/10.1177/11779322221125605 (2022).
-
Hussain, S. A. et al. Synergistic effects of copper oxide-stigmasterol nanoparticles: A novel therapeutic strategy for oral pathogen biofilms and oral cancer. Mater. Technol. 40, 2476999. https://doi.org/10.1080/10667857.2025.2476999 (2025).
-
Rafi Shaik, M. et al. Dual Action of Nanostructured α-Mangostin-Copper Oxide Complexes Against Dental Pathogen Biofilms and Oral Cancer via Apoptosis Gene Modulation. Chem. Biodivers. 22, e202401961. https://doi.org/10.1002/cbdv.202401961 (2025).
-
Kaushal, A. et al. Advances in therapeutic applications of silver nanoparticles. Chem. Biol. Interact. 382, 110590 (2023).
-
Ren, Y., Zhang, Y. & Li, X. Application of AgNPs in biomedicine: An overview and current trends. Nanotechnol. Rev. 13, 20240030. https://doi.org/10.1515/ntrev-2024-0030 (2024).
-
Abdel Azeem, M. N., Hassaballa, S., Ahmed, O. M., Elsayed, K. N. & Shaban, M. Photocatalytic activity of revolutionary Galaxaura elongata, Turbinaria ornata, and Enteromorpha flexuosa’s bio-capped silver nanoparticles for industrial wastewater treatment. Nanomaterials 11, 3241. https://doi.org/10.3390/nano11123241 (2021).
-
Burdușel, A. C. et al. Biomedical Applications of Silver Nanoparticles: An Up-to-Date Overview. Nanomaterials (Basel) 8, https://doi.org/10.3390/nano8090681 (2018).
-
Mohamed, A., Dayo, M., Alahmadi, S. & Ali, S. Anti-Inflammatory and Antimicrobial Activity of Silver Nanoparticles Green-Synthesized Using Extracts of Different Plants. Nanomaterials 14, 1383 (2024).
-
Chahardoli, A., Qalekhani, F., Hajmomeni, P., Shokoohinia, Y. & Fattahi, A. Enhanced hemocompatibility, antimicrobial and anti-inflammatory properties of biomolecules stabilized AgNPs with cytotoxic effects on cancer cells. Sci. Rep. 15, 1186. https://doi.org/10.1038/s41598-024-82349-z (2025).
-
Casals, E., Gusta, M. F., Bastus, N., Rello, J. & Puntes, V. Silver Nanoparticles and Antibiotics: A Promising Synergistic Approach to Multidrug-Resistant Infections. Microorganisms 13, 952 (2025).
-
Dudhagara, P. et al. Biogenic Synthesis of Antibacterial, Hemocompatible, and Antiplatelets Lysozyme Functionalized Silver Nanoparticles through the One-Step Process for Therapeutic Applications. Processes 10, 623 (2022).
-
Hashem, A. H. et al. Antifungal Activity of Biosynthesized Silver Nanoparticles (AgNPs) against Aspergilli Causing Aspergillosis: Ultrastructure Study. Journal of Functional Biomaterials 13, 242 (2022).
-
Abass Sofi, M., Sunitha, S., Ashaq Sofi, M., Khadheer Pasha, S. K. & Choi, D. An overview of antimicrobial and anticancer potential of silver nanoparticles. Journal of King Saud University – Science 34, 101791. https://doi.org/10.1016/j.jksus.2021.101791 (2022).
-
Beyene, H. D., Werkneh, A. A., Bezabh, H. K. & Ambaye, T. G. Synthesis paradigm and applications of silver nanoparticles (AgNPs), a review. Sustain. Mater. Technol. 13, 18–23. https://doi.org/10.1016/j.susmat.2017.08.001 (2017).
-
Chen, L. & Liang, J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater Sci Eng C Mater Biol Appl 112, 110924. https://doi.org/10.1016/j.msec.2020.110924 (2020).
-
Khandelwal, N., Kaur, G., Kumar, N. & Tiwari, A. APPLICATION OF SILVER NANOPARTICLES IN VIRAL INHIBITION: A NEW HOPE FOR ANTIVIRALS. Digest Journal of Nanomaterials & Biostructures (DJNB) 9 (2014).
-
Uthaman, A., Lal, H. M. & Thomas, S. Fundamentals of silver nanoparticles and their toxicological aspects. Polymer Nanocomposites Based on Silver Nanoparticles: Synthesis, Characterization and Applications, 1–24, https://doi.org/10.1007/978-3-030-44259-0_1 (2021).
-
Ahmad, A. et al. Biological synthesis of silver nanoparticles and their medical applications. World Academy of Sciences Journal 6, 1–9. https://doi.org/10.3892/wasj.2024.237 (2024).
-
Omar, R., Ibraheem, I., Hassan, S. & Elsayed, K. N. Biogenic Synthesis of Different forms of Bio-caped Silver Nanoparticles using Microcystis sp. and its Antimicrobial Activity. Current Nanoscience 19, 850–862, https://doi.org/10.2174/1573413719666230202122334 (2023).
-
Ghosh, U., Sayef Ahammed, K., Mishra, S. & Bhaumik, A. The Emerging Roles of Silver Nanoparticles to Target Viral Life Cycle and Detect Viral Pathogens. Chem Asian J 17, e202101149. https://doi.org/10.1002/asia.202101149 (2022).
-
Abou El-Nour, K. M., Eftaiha, A. a., Al-Warthan, A. & Ammar, R. A. Synthesis and applications of silver nanoparticles. Arabian journal of chemistry 3, 135–140, https://doi.org/10.1016/j.arabjc.2010.04.008 (2010).
-
Ismail, G. A., El-Sheekh, M. M., Samy, R. M. & Gheda, S. F. Antimicrobial, antioxidant, and antiviral activities of biosynthesized silver nanoparticles by phycobiliprotein crude extract of the cyanobacteria Spirulina platensis and Nostoc linckia. Bionanoscience 11, 355–370. https://doi.org/10.1007/s12668-021-00828-3 (2021).
-
Elumalai, D., Hemavathi, M., Deepaa, C. V. & Kaleena, P. K. Evaluation of phytosynthesised silver nanoparticles from leaf extracts of Leucas aspera and Hyptis suaveolens and their larvicidal activity against malaria, dengue and filariasis vectors. Parasite Epidemiol Control 2, 15–26. https://doi.org/10.1016/j.parepi.2017.09.001 (2017).
-
Lin, Z. et al. The inhibition of H1N1 influenza virus-induced apoptosis by silver nanoparticles functionalized with zanamivir. RSC Adv. 7, 742–750. https://doi.org/10.1039/C6RA25010F (2017).
-
Li, Y. et al. Silver Nanoparticle Based Codelivery of Oseltamivir to Inhibit the Activity of the H1N1 Influenza Virus through ROS-Mediated Signaling Pathways. ACS Appl Mater Interfaces 8, 24385–24393. https://doi.org/10.1021/acsami.6b06613 (2016).
-
Kumar, S. D. et al. Mangrove-mediated green synthesis of silver nanoparticles with high HIV-1 reverse transcriptase inhibitory potential. Journal of Cluster Science 28, 359–367, https://doi.org/10.1007/s10876-016-1100-1 (2017)
-
Haggag, E. G. et al. Antiviral potential of green synthesized silver nanoparticles of Lampranthus coccineus and Malephora lutea. Int J Nanomedicine 14, 6217–6229. https://doi.org/10.2147/IJN.S214171 (2019).
-
Zhang, R. et al. Silver nanoparticle treatment ameliorates biliary atresia syndrome in rhesus rotavirus inoculated mice. Nanomedicine 13, 1041–1050. https://doi.org/10.1016/j.nano.2016.11.013 (2017).
-
Saad, M. H., El-Fakharany, E. M., Salem, M. S. & Sidkey, N. M. In vitro assessment of dual (antiviral and antitumor) activity of a novel lectin produced by the newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210. 1. Journal of Biomolecular Structure and Dynamics 40, 3560–3580 (2022).
-
Luceri, A., Francese, R., Lembo, D., Ferraris, M. & Balagna, C. Silver nanoparticles: review of antiviral properties, mechanism of action and applications. Microorganisms 11, 629 (2023).
-
Saad, M. H., El-Fakharany, E. M., Salem, M. S. & Sidkey, N. M. In vitro assessment of dual (antiviral and antitumor) activity of a novel lectin produced by the newly cyanobacterium isolate, Oscillatoria acuminate MHM-632 MK014210.1. J Biomol Struct Dyn 40, 3560–3580, https://doi.org/10.1080/07391102.2020.1848632 (2022).
-
Carbone, D. A., Pellone, P., Lubritto, C. & Ciniglia, C. Evaluation of Microalgae Antiviral Activity and Their Bioactive Compounds. Antibiotics (Basel) 10, 746, https://doi.org/10.3390/antibiotics10060746 (2021).
-
Singh, U. et al. Cyanometabolites: molecules with immense antiviral potential. Arch Microbiol 205, 164. https://doi.org/10.1007/s00203-023-03514-y (2023).
-
Zuorro, A. et al. Enhancement of phycobiliprotein accumulation in thermotolerant Oscillatoria sp. through media optimization. ACS omega 6, 10527–10536 (2021).
-
Żymańczyk-Duda, E., Samson, S. O., Brzezińska-Rodak, M. & Klimek-Ochab, M. Versatile applications of cyanobacteria in biotechnology. Microorganisms 10, 2318 (2022).
-
Kumar, B. N. P., Mahaboobi, S. & Satyam, S. Cyanobacteria: A potential natural source for drug discovery and bioremediation. J. Ind. Pollut. Control 32, 508–517 (2016).
-
Bar-On, Y. et al. Safety and antiviral activity of combination HIV-1 broadly neutralizing antibodies in viremic individuals. Nat Med 24, 1701–1707. https://doi.org/10.1038/s41591-018-0186-4 (2018).
-
Kigondu, E. V. M. et al. Antiplasmodial and cytotoxicity activities of some selected plants used by the Maasai community. Kenya. South African Journal of Botany 77, 725–729. https://doi.org/10.1016/j.sajb.2011.03.008 (2011).
-
Liu, X. et al. PharmMapper server: A web server for potential drug target identification using pharmacophore mapping approach. Nucleic Acids Res. 38, W609–W614 (2010).
-
Kanehisa, M., Furumichi, M., Sato, Y., Matsuura, Y. & Ishiguro-Watanabe, M. KEGG: Biological systems database as a model of the real world. Nucleic Acids Res. 53, D672–D677 (2025).
-
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).
-
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).
-
Youssif, K. A. et al. Cytotoxic potential of green synthesized silver nanoparticles of lampranthus coccineus extracts, metabolic profiling and molecular docking study. ChemistrySelect 5, 12278–12286. https://doi.org/10.1002/slct.202002947 (2020).
-
Mostafa, E. M., Badr, Y., Hashem, M., Abo-EL-Sooud, K. & Faid, A. H. Reducing the effective dose of doxycycline using chitosan silver nanocomposite as a carriers on gram positive and gram-negative bacteria. Sci. Rep. 14, 27819 (2024).
-
Sharifi-Rad, M., Elshafie, H. S. & Pohl, P. Green synthesis of silver nanoparticles (AgNPs) by Lallemantia royleana leaf extract: Their bio-pharmaceutical and catalytic properties. J. Photochem. Photobiol., A 448, 115318. https://doi.org/10.1016/j.jphotochem.2023.115318 (2024).
-
Nainangu, P., K , K., Subramanian, K., Gopal, S. & Antonyraj, A. P. M. Characterization of Bioactive Metabolites in Phormidium sp. PB21: Pigment Production, Antimicrobial Potential, and Toxicity Assessment. Chemistry & Biodiversity 22, e202403415, https://doi.org/10.1002/cbdv.202403415 (2025).
-
Ogunbiyi, E. O., Kupa, E., Adanma, U. M. & Solomon, N. O. Comprehensive review of metal complexes and nanocomposites: Synthesis, characterization, and multifaceted biological applications. Engineering Science & Technology Journal 5, 1935–1951. https://doi.org/10.51594/estj.v5i6.1215 (2024).
-
Chota, A., Abrahamse, H. & George, B. P. Green synthesis and characterization of AgNPs, liposomal loaded AgNPs and ZnPcS4 photosensitizer for enhanced photodynamic therapy effects in MCF-7 breast cancer cells. Photodiagn. Photodyn. Ther. 48, 104252 (2024).
-
Abdelkader, D. H. et al. Insight into fucoidan-based PEGylated PLGA nanoparticles encapsulating methyl anthranilic acid: In vitro evaluation and in vivo anti-inflammatory study. Mar. Drugs 20, 694 (2022).
-
Kim, N.-G. et al. Harnessing marine-derived polyphenols for the one-pot synthesis of functional silver nanoparticles: Anti-cancer, anti-bacterial, and MD simulation. Nano Today 61, 102651 (2025).
-
Abbigeri, M. B. et al. Antioxidant and anti-diabetic potential of the green synthesized silver nanoparticles using Martynia annua L. root extract. Nano TransMed 4, 100070 (2025).
-
Hoang, V.-T. et al. Functionalized-AgNPs for Long-Term Stability and Its Applicability in the Detection of Manganese Ions. Adv. Polym. Technol. 2020, 9437108 (2020).
-
Swain, S., Bej, S., Bishoyi, A. K., Jali, B. R. & Padhy, R. N. Biosynthesis and characterisations of silver nanoparticles with filamentous cyanobacterium Lyngbya sp. with in vitro antibacterial properties against MDR pathogenic bacteria. Naunyn-Schmiedeberg’s Archives of Pharmacology, 1–11 (2024).
-
Edayadulla, N. & Sundari, C. S. in Sustainable Green Synthesised Nano-Dimensional Materials for Energy and Environmental Applications 47–63 (CRC Press, 2024).
-
Kabeya, J. K. et al. Antimicrobial capping agents on silver nanoparticles made via green method using natural products from banana plant waste. Artificial Cells, Nanomedicine, and Biotechnology 53, 29–42 (2025).
-
Fathima, A. & Rao, J. R. Selective toxicity of Catechin—a natural flavonoid towards bacteria. Appl. Microbiol. Biotechnol. 100, 6395–6402 (2016).
-
Gheisari, F. et al. Bromelain-loaded silver nanoparticles: Formulation, characterization and biological activity. Inorg. Chem. Commun. 161, 112006 (2024).
-
Tabaika, P. M., Astuty, S. D., Dewang, S., Permatasari, N. U. & Wahiduddin, W. The Comparison between Energy Density of Blue and Red Light which Activation Silver Nanoparticles to Inhibition Candida albicans Biofilms. Trends in Sciences 21, 7702–7702. https://doi.org/10.48048/tis.2024.7702 (2024).
-
Barabadi, H. & Honary, S. Biofabrication of gold and silver nanoparticles for pharmaceutical applications. Pharmaceutical and Biomedical Research 2, 1–7. https://doi.org/10.18869/acadpub.pbr.2.1.1 (2016).
-
Honary, S., Barabadi, H., Gharaei-Fathabad, E. & Naghibi, F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Trop. J. Pharm. Res. 12, 7–11. https://doi.org/10.4314/tjpr.v12i1.2 (2013).
-
Jain, R., Singh, R., Badhwar, R., Gupta, T. & Popli, H. Development and optimization of Clitoria Teratea synthesized silver nanoparticles and its application to nanogel systems for Wound Healing. Drug Dev. Ind. Pharm. 50, 181–191 (2024).
-
Idris, A. A. M., Asman, S., Mohamed, M. H., Ali, M. A. N. M. & Sulaimi, W. M. F. H. W. Identifying the phytochemical content in Illicium verum (Star Anise) extracts prepared with different polarity solvents based on a simple maceration method. Enhanced Knowledge in Sciences and Technology 4, 217–222 (2024).
-
Nzor, J., Uwakwe, A. & Ogunka-Nnoka, C. Comparative analysis of Anthocleista vogelii leaf extracts: Solvent influence on phytochemical composition, quantitative profile, and in-vitro antioxidant activities. Int. J. Innov. Biochem. Microbiol. Res. 12, 1–7 (2024).
-
Clogston, J. D. & Patri, A. K. Zeta potential measurement. Characterization of nanoparticles intended for drug delivery, 63–70 (2011).
-
Abbigeri, M. B. et al. Potential in vitro antibacterial and anticancer properties of biosynthesized multifunctional silver nanoparticles using Martynia annua L. leaf extract. Nano-Structures & Nano-Objects 39, 101320, https://doi.org/10.1016/j.nanoso.2024.101320 (2024).
-
Filippov, S. et al. Dynamic light scattering and transmission electron microscopy in drug delivery: A roadmap for correct characterization of nanoparticles and interpretation of results. Materials Horizons 10, https://doi.org/10.1039/D3MH00717K (2023).
-
Karunakar, K. K., Cheriyan, B. V., Gnanisha, M. & Abinavi, B. Therapeutic advancements in nanomedicine: The multifaceted roles of silver nanoparticles. Biotechnology Notes (2024).
-
Gurunathan, S. et al. Antiviral potential of nanoparticles—can nanoparticles fight against coronaviruses?. Nanomaterials 10, 1645 (2020).
-
Chen, L. & Liang, J. An overview of functional nanoparticles as novel emerging antiviral therapeutic agents. Mater. Sci. Eng., C 112, 110924 (2020).
-
Bhatti, A. & DeLong, R. K. Nanoscale Interaction Mechanisms of Antiviral Activity. ACS Pharmacology & Translational Science 6, 220–228 (2023).
-
Alshallash, K. S. et al. Zingiber officinale-Mediated biosynthesis of bimetallic Gold/Silver (BAu/Ag) nanoalloys; an insight into antiviral and anticancer activities. Journal of King Saud University-Science 36, 103243 (2024).
-
Shady, N. H. et al. Hepatitis c virus ns3 protease and helicase inhibitors from red sea sponge (Amphimedon) species in green synthesized silver nanoparticles assisted by in silico modeling and metabolic profiling. International Journal of Nanomedicine, 3377–3389 (2020).
-
Abdel-Rahman, I. A. et al. Metabolite profiling of green algae Halimeda opuntia to target hepatitis C virus-796 polymerase inhibitors assisted by molecular docking. S. Afr. J. Bot. 151, 538–543 (2022).
-
Dhanasezhian, A. et al. Anti-herpes simplex virus (HSV-1 and HSV-2) activity of biogenic gold and silver nanoparticles using seaweed Sargassum wightii. (2019).
-
Bhavi, S. M. et al. Biogenic silver nanoparticles from Simarouba glauca DC leaf extract: Synthesis, characterization, and anticancer efficacy in lung cancer cells with protective effects in Caenorhabditis elegans. Nano TransMed 3, 100052. https://doi.org/10.1016/j.ntm.2024.100052 (2024).
-
Singh, S. R. et al. The effect of Clitoria ternatea L. flowers-derived silver nanoparticles on A549 and L-132 human cell lines and their antibacterial efficacy in Caenorhabditis elegans in vivo. Hybrid Advances 8, 100359, https://doi.org/10.1016/j.hybadv.2024.100359 (2025).
-
Bhavi, S. M. et al. Syzygium malaccense leaf extract-mediated silver nanoparticles: Synthesis, characterization, and biomedical evaluation in Caenorhabditis elegans and lung cancer cell line. Green Chem. Lett. Rev. 18, 2456624. https://doi.org/10.1080/17518253.2025.2456624 (2025).
-
Bhavi, S. M. et al. Green synthesis, characterization, antidiabetic, antioxidant and antibacterial applications of silver nanoparticles from Syzygium caryophyllatum (L.) Alston leaves. Process Biochemistry 145, 89–103, https://doi.org/10.1016/j.procbio.2024.06.017 (2024).
-
Abbigeri, M. B. et al. Antioxidant and anti-diabetic potential of the green synthesized silver nanoparticles using Martynia annua L. root extract. Nano TransMed 4, 100070, https://doi.org/10.1016/j.ntm.2025.100070 (2025).
-
Santhosh, S. et al. Growth optimization, free radical scavenging and antibacterial potential of Chlorella sp. SRD3 extracts against clinical isolates. Journal of applied microbiology 127, 481–494 (2019).
-
Sigamani, S. et al. Larvicidal potency of the extracts from Chlorella sp. against Aedes aegypti. Biocatalysis and Agricultural Biotechnology 27, 101663 (2020).
-
Min, J.-Y. & Jang, Y. J. Macrolide therapy in respiratory viral infections. Mediators of inflammation 2012 (2012).
-
Poddighe, D. & Aljofan, M. Clinical evidences on the antiviral properties of macrolide antibiotics in the COVID-19 era and beyond. Antiviral Chem. Chemother. 28, 2040206620961712 (2020).
-
Lenz, K. D., Klosterman, K. E., Mukundan, H. & Kubicek-Sutherland, J. Z. Macrolides: From toxins to therapeutics. Toxins 13, 347 (2021).
-
Huang, M.-H. et al. Up-regulation of glycolipid transfer protein by bicyclol causes spontaneous restriction of hepatitis C virus replication. Acta Pharmaceutica Sinica B 9, 769–781. https://doi.org/10.1016/j.apsb.2019.01.013 (2019).
-
El Baz, F., El Baroty, G., Abd El Baky, H., Abd El-Salam, O. & Ibrahim, E. Structural characterization and biological activity of sulfolipids from selected marine algae. Grasas y aceites 64, 561–571 (2013).
-
Deyab, M., Mofeed, J., El-Bilawy, E. & Ward, F. Antiviral activity of five filamentous cyanobacteria against coxsackievirus B3 and rotavirus. Arch. Microbiol. 202, 213–223. https://doi.org/10.1007/s00203-019-01734-9 (2020).
-
Kaushik, S., Kaushik, S., Kumar, R., Dar, L. & Yadav, J. P. In-vitro and in silico activity of Cyamopsis tetragonoloba (Gaur) L. supercritical extract against the dengue-2 virus. VirusDisease 31, 470–478, https://doi.org/10.1007/s13337-020-00624-9 (2020).
-
Rena, N. & Wibawa, I. Albumin infusion in liver cirrhotic patients. Acta Med Indones 42, 162–168 (2010).
-
Paslaru, L. et al. Comparative RNA-sequencing analysis reveals high complexity and heterogeneity of transcriptomic and immune profiles in hepatocellular carcinoma tumors of viral (HBV, HCV) and non-viral etiology. Medicina 58, 1803 (2022).
-
Sonntag, R. et al. Cyclin E1 in murine and human liver cancer: A promising target for therapeutic intervention during tumour progression. Cancers 13, 5680 (2021).
-
Stuart, J. D., Salinas, E. & Grakoui, A. Immune system control of hepatitis C virus infection. Curr. Opin. Virol. 46, 36–44 (2021).
-
Park, S.-J. & Hahn, Y. S. Hepatocytes infected with hepatitis C virus change immunological features in the liver microenvironment. Clin. Mol. Hepatol. 29, 65 (2023).
-
Perrin-Cocon, L. et al. Domain 2 of hepatitis c virus protein ns5a activates glucokinase and induces lipogenesis in hepatocytes. Int. J. Mol. Sci. 23, 919 (2022).
-
Yan, Y., Tang, Y. d. & Zheng, C. When cyclin‐dependent kinases meet viral infections, including SARS‐CoV‐2. Journal of Medical Virology 94, 2962–2968 (2022).
-
Sookoian, S. et al. Serum aminotransferases in nonalcoholic fatty liver disease are a signature of liver metabolic perturbations at the amino acid and Krebs cycle level. Am. J. Clin. Nutr. 103, 422–434 (2016).
-
Villa, E. et al. Early menopause is associated with lack of response to antiviral therapy in women with chronic hepatitis C. Gastroenterology 140, 818–829. e812 (2011).
-
Lara, H. H., Ixtepan-Turrent, L., Garza Treviño, E. N. & Singh, D. K. Use of silver nanoparticles increased inhibition of cell-associated HIV-1 infection by neutralizing antibodies developed against HIV-1 envelope proteins. Journal of Nanobiotechnology 9, 1–9 (2011).
-
Manisekaran, R. et al. Silver-Nanoparticles-Based Composites for Antimicrobial Applications: An Update. ChemistrySelect 9, e202403772 (2024).
-
Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. & Stanier, R. Y. Generic assignments, strain histories and properties of pure cultures of cyanobacteria. Microbiology 111, 1–61. https://doi.org/10.1099/00221287-111-1-1 (1979).
-
Leyu, A. M., Debebe, S. E., Bachheti, A., Rawat, Y. S. & Bachheti, R. K. Green Synthesis of Gold and Silver Nanoparticles Using Invasive Alien Plant Parthenium hysterophorus and Their Antimicrobial and Antioxidant Activities. Sustainability 15, 9456 (2023).
-
Chinnasamy, R. et al. Eco-friendly synthesis of Ag-NPs using Endostemon viscosus (Lamiaceae): Antibacterial, antioxidant, larvicidal, photocatalytic dye degradation activity and toxicity in zebrafish embryos. Environ. Res. 218, 114946 (2023).
-
Amin, B. H., Ahmed, H. Y., El Gazzar, E. M. & Badawy, M. M. Enhancement the mycosynthesis of selenium nanoparticles by using gamma radiation. Dose-Response 19, 15593258211059324. https://doi.org/10.1177/15593258211059323 (2021).
-
Lim, Y. S. & Hwang, S. B. Hepatitis C virus NS5A protein interacts with phosphatidylinositol 4-kinase type IIIalpha and regulates viral propagation. J. Biol. Chem. 286, 11290–11298. https://doi.org/10.1074/jbc.M110.194472 (2011).
-
Lim, Y.-S. et al. Asunaprevir, a potent Hepatitis C virus protease inhibitor, blocks SARS-CoV-2 propagation. Mol. Cells 44, 688–695 (2021).
-
Abdel-Wahab, N. M. et al. Diterpenoids profile of the marine sponge Chelonaplysilla erecta and candidacy as potential antitumor drugs investigated by molecular docking and pharmacokinetic studies. Nat. Prod. Res. 37, 598–602. https://doi.org/10.1080/14786419.2022.2063856 (2023).
-
Azmy, L. et al. Evaluation of Cytotoxicity and Metabolic Profiling of Synechocystis sp. Extract Encapsulated in Nano-Liposomes and Nano-Niosomes Using LC-MS, Complemented by Molecular Docking Studies. Biology 13, 581 (2024).
-
Rudik, A., Dmitriev, A., Lagunin, A., Filimonov, D. & Poroikov, V. PASS-based prediction of metabolites detection in biological systems. SAR QSAR Environ. Res. 30, 751–758 (2019).
-
Iqbal, D. et al. Pharmacophore-based screening, molecular docking, and dynamic simulation of fungal metabolites as inhibitors of multi-targets in neurodegenerative disorders. Biomolecules 13, 1613 (2023).
-
Singh, S. K., Kumar, A., Singh, R. B., Ghosh, P. & Bajad, N. G. Recent applications of bioinformatics in target identification and drug discovery for Alzheimer’s disease. Curr. Top. Med. Chem. 22, 2153–2175 (2022).
-
Von Mering, C. et al. STRING: Known and predicted protein–protein associations, integrated and transferred across organisms. Nucleic Acids Res. 33, D433–D437 (2005).
-
Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
-
Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).
-
Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci 28, 1947–1951. https://doi.org/10.1002/pro.3715 (2019).
-
Kanehisa, M., Furumichi, M., Sato, Y., Kawashima, M. & Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res 51, D587-d592. https://doi.org/10.1093/nar/gkac963 (2023).
-
Studio, D. Discovery studio. Accelrys [2.1] (2008).
-
Tegegne, B. A. & Alehegn, A. A. Antipyretic potential of 80% methanol extract and solvent fractions of Bersama abyssinica Fresen.(melianthaceae) leaves against yeast-induced pyrexia in mice. Journal of Experimental Pharmacology, 81–91 (2023)
