Neutrophil-mediated delivery of hybrid cross-species nanovesicles for treatment of bacterial infections

neutrophil-mediated-delivery-of-hybrid-cross-species-nanovesicles-for-treatment-of-bacterial-infections
Neutrophil-mediated delivery of hybrid cross-species nanovesicles for treatment of bacterial infections

References

  1. Uddin, T. M. et al. Antibiotic resistance in microbes: history, mechanisms, therapeutic strategies and future prospects. J. Infect. Public Health 14, 1750–1766 (2021).

    Google Scholar 

  2. China Antimicrobial Surveillance Network (CHINET) www.chinets.com (2025).

  3. Sati, H. et al. The WHO Bacterial Priority Pathogens List 2024: a prioritisation study to guide research, development, and public health strategies against antimicrobial resistance. Lancet Infect Dis. 25, 1033–1043 (2025).

  4. Ayoub Moubareck, C. Polymyxins and bacterial membranes: a review of antibacterial activity and mechanisms of resistance. Membranes (Basel) 10, 181 (2020).

  5. Nang, S. C., Azad, M. A. K., Velkov, T., Zhou, Q. T. & Li, J. Rescuing the last-line polymyxins: achievements and challenges. Pharm. Rev. 73, 679–728 (2021).

    Google Scholar 

  6. Nation, R. L. et al. Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus. Lancet Infect. Dis. 15, 225–234 (2015).

    Google Scholar 

  7. Imberti, R. et al. Steady-state pharmacokinetics and BAL concentration of colistin in critically Ill patients after IV colistin methanesulfonate administration. Chest 138, 1333–1339 (2010).

    Google Scholar 

  8. Boisson, M. et al. Comparison of intrapulmonary and systemic pharmacokinetics of colistin methanesulfonate (CMS) and colistin after aerosol delivery and intravenous administration of CMS in critically ill patients. Antimicrob. Agents Chemother. 58, 7331–7339 (2014).

    Google Scholar 

  9. Zuo, W. et al. Biomarker-driven pharmacokinetics and efficacy of polymyxin b in critically Ill patients with XDR-GN pneumonia. Pharmaceuticals (Basel) 18, 586 (2025).

  10. Aranzana-Climent, V. et al. Translational in vitro and in vivo PKPD modelling for apramycin against Gram-negative lung pathogens to facilitate prediction of human efficacious dose in pneumonia. Clin. Microbiol. Infect. 28, 1367–1374 (2022).

    Google Scholar 

  11. Uhl, B. et al. Aged neutrophils contribute to the first line of defense in the acute inflammatory response. Blood 128, 2327–2337 (2016).

    Google Scholar 

  12. Mayadas, T. N., Cullere, X. & Lowell, C. A. The multifaceted functions of neutrophils. Annu Rev. Pathol. 9, 181–218 (2014).

    Google Scholar 

  13. Soehnlein, O. & Lindbom, L. Phagocyte partnership during the onset and resolution of inflammation. Nat. Rev. Immunol. 10, 427–439 (2010).

    Google Scholar 

  14. Zemans, R. L., Colgan, S. P. & Downey, G. P. Transepithelial migration of neutrophils: mechanisms and implications for acute lung injury. Am. J. Respir. Cell Mol. Biol. 40, 519–535 (2009).

    Google Scholar 

  15. Burns, A. R., Smith, C. W. & Walker, D. C. Unique structural features that influence neutrophil emigration into the lung. Physiol. Rev. 83, 309–336 (2003).

    Google Scholar 

  16. Li, M. et al. Chemotaxis-driven delivery of nano-pathogenoids for complete eradication of tumors post-phototherapy. Nat. Commun. 11, 1126 (2020).

    Google Scholar 

  17. Chavda, V. P. et al. Unveiling the promise: exosomes as game-changers in anti-infective therapy. Exploration (Beijing) 4, 20230139 (2024).

    Google Scholar 

  18. Park, K.-S. et al. Synthetic bacterial vesicles combined with tumour extracellular vesicles as cancer immunotherapy. J. Extracell. Vesicles 10, e12120 (2021).

    Google Scholar 

  19. Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol 13, 605–619 (2015).

    Google Scholar 

  20. Svennerholm, K. et al. Escherichia coli outer membrane vesicles can contribute to sepsis induced cardiac dysfunction. Sci. Rep. 7, 17434 (2017).

    Google Scholar 

  21. Liu, J. et al. Glypican-3-targeted macrophages delivering drug-loaded exosomes offer efficient cytotherapy in mouse models of solid tumours. Nat. Commun. 15, 8203 (2024).

    Google Scholar 

  22. Luo, Z. et al. Engineering versatile bacteria-derived outer membrane vesicles: an adaptable platform for advancing cancer immunotherapy. Adv. Sci. (Weinh.) 11, e2400049 (2024).

    Google Scholar 

  23. Buchholz, K. R. et al. Potent activity of polymyxin B is associated with long-lived super-stoichiometric accumulation mediated by weak-affinity binding to lipid A. Nat. Commun. 15, 4733 (2024).

    Google Scholar 

  24. Burt, M. et al. Lipid A in outer membrane vesicles shields bacteria from polymyxins. J. Extracell. Vesicles 13, e12447 (2024).

    Google Scholar 

  25. Chen, Z. et al. Bacterial outer membrane vesicles increase polymyxin resistance in Pseudomonas aeruginosa while inhibiting its quorum sensing. J. Hazard Mater. 478, 135588 (2024).

    Google Scholar 

  26. Park, K.-S. et al. Detoxified synthetic bacterial membrane vesicles as a vaccine platform against bacteria and SARS-CoV-2. J. Nanobiotechnology 21, 156 (2023).

    Google Scholar 

  27. Thompson, B. T., Chambers, R. C. & Liu, K. D. Acute respiratory distress syndrome. N. Engl. J. Med. 377, 562–572 (2017).

    Google Scholar 

  28. Bos, L. D. J. & Ware, L. B. Acute respiratory distress syndrome: causes, pathophysiology, and phenotypes. Lancet 400, 1145–1156 (2022).

    Google Scholar 

  29. Luo, J. W. et al. Immuno-protective cationic ginsenoside Rb1 vesicles for macrophage-mediated targeted therapy of inflammatory diseases. Mater. Today Bio 34, 16 (2025).

    Google Scholar 

  30. Duan, S. X. et al. An all-in-one nano-biomimetic polyamidoamine dendrimer platform for treatment of CRKP pneumonia. Adv. Funct. Mater. 34, 21 (2024).

    Google Scholar 

  31. Zhuang, X. et al. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J. Extracell. Vesicles 4, 28713 (2015).

    Google Scholar 

  32. Yang, S. et al. Ginseng exosomes modulate M1/M2 polarisation by activating autophagy and target IKK/IкB/NF-кB to alleviate inflammatory bowel disease. J. Nanobiotechnol. 23, 198 (2025).

    Google Scholar 

  33. Lian, M. Q. et al. Plant-derived extracellular vesicles: recent advancements and current challenges on their use for biomedical applications. J. Extracell. Vesicles 11, e12283 (2022).

    Google Scholar 

  34. Wu, B. et al. Turmeric-derived nanoparticles functionalized aerogel regulates multicellular networks to promote diabetic wound healing. Adv. Sci. (Weinh.) 11, e2307630 (2024).

    Google Scholar 

  35. Urzì, O. et al. Lemon-derived nanovesicles achieve antioxidant and anti-inflammatory effects activating the AhR/Nrf2 signaling pathway. iScience 26, 107041 (2023).

    Google Scholar 

  36. Raimondo, S. et al. Anti-inflammatory properties of lemon-derived extracellular vesicles are achieved through the inhibition of ERK/NF-κB signalling pathways. J. Cell Mol. Med. 26, 4195–4209 (2022).

    Google Scholar 

  37. Zhang, M. et al. Edible ginger-derived nanoparticles: a novel therapeutic approach for the prevention and treatment of inflammatory bowel disease and colitis-associated cancer. Biomaterials 101, 321–340 (2016).

    Google Scholar 

  38. Savcı, Y. et al. Grapefruit-derived extracellular vesicles as a promising cell-free therapeutic tool for wound healing. Food Funct. 12, 5144–5156 (2021).

    Google Scholar 

  39. Huang, R. et al. Plant exosomes fused with engineered mesenchymal stem cell-derived nanovesicles for synergistic therapy of autoimmune skin disorders. J. Extracell. Vesicles 12, e12361 (2023).

    Google Scholar 

  40. Ju, S. et al. Grape exosome-like nanoparticles induce intestinal stem cells and protect mice from DSS-induced colitis. Mol. Ther. 21, 1345–1357 (2013).

    Google Scholar 

  41. Wang, Q. et al. Delivery of therapeutic agents by nanoparticles made of grapefruit-derived lipids. Nat. Commun. 4, 1867 (2013).

    Google Scholar 

  42. Kim, J., Li, S., Zhang, S. & Wang, J. Plant-derived exosome-like nanoparticles and their therapeutic activities. Asian J. Pharm. Sci. 17, 53–69 (2022).

    Google Scholar 

  43. Qiao, Z. et al. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat. Commun. 13, 7164 (2022).

    Google Scholar 

  44. Xiao, Q. et al. Lemon-derived extracellular vesicles nanodrugs enable to efficiently overcome cancer multidrug resistance by endocytosis-triggered energy dissipation and energy production reduction. Adv. Sci. (Weinh.) 9, e2105274 (2022).

    Google Scholar 

  45. Zhou, X. et al. Tumour-derived extracellular vesicle membrane hybrid lipid nanovesicles enhance siRNA delivery by tumour-homing and intracellular freeway transportation. J. Extracell. Vesicles 11, e12198 (2022).

    Google Scholar 

  46. Xie, M. et al. Membrane fusion-mediated loading of therapeutic siRNA into exosome for tissue-specific application. Adv. Mater. 36, e2403935 (2024).

    Google Scholar 

  47. Peng, X. et al. Biofunctional lipid nanoparticles for precision treatment and prophylaxis of bacterial infections. Sci. Adv. 10, eadk9754 (2024).

    Google Scholar 

  48. Peng, X. et al. A multiantigenic antibacterial nanovaccine utilizing hybrid membrane vesicles for combating Pseudomonas aeruginosa infections. J. Extracell. Vesicles 13, e12524 (2024).

    Google Scholar 

  49. Zhou, Y. et al. siRNA delivery against myocardial ischemia reperfusion injury mediated by reversibly camouflaged biomimetic nanocomplexes. Adv. Mater. 35, e2210691 (2023).

    Google Scholar 

  50. Wang, D. et al. Erythrocyte-cancer hybrid membrane camouflaged hollow copper sulfide nanoparticles for prolonged circulation life and homotypic-targeting photothermal/chemotherapy of melanoma. ACS Nano 12, 5241–5252 (2018).

    Google Scholar 

  51. Kucerka, N. et al. The effect of cholesterol on short- and long-chain monounsaturated lipid bilayers as determined by molecular dynamics simulations and X-ray scattering. Biophys. J. 95, 2792–2805 (2008).

    Google Scholar 

  52. Leftin, A., Molugu, T. R., Job, C., Beyer, K. & Brown, M. F. Area per lipid and cholesterol interactions in membranes from separated local-field (13)C NMR spectroscopy. Biophys. J. 107, 2274–2286 (2014).

    Google Scholar 

  53. Dahley, C., Garessus, E. D. G., Ebert, A. & Goss, K.-U. Impact of cholesterol and sphingomyelin on intrinsic membrane permeability. Biochim Biophys. Acta Biomembr. 1864, 183953 (2022).

    Google Scholar 

  54. Orlikowska-Rzeznik, H., Versluis, J., Bakker, H. J. & Piatkowski, L. Cholesterol changes interfacial water alignment in model cell membranes. J. Am. Chem. Soc. 146, 13151–13162 (2024).

    Google Scholar 

  55. Zhuo, Y. et al. Direct cytosolic delivery of siRNA via cell membrane fusion using cholesterol-enriched exosomes. Nat. Nanotechnol. 19, 1858–1868 (2024).

    Google Scholar 

  56. Gao, M. Q. et al. Neutrophil-mediated cordycepin-based nanoparticles for targeted treatment of acute lung injury. Chem. Eng. J. 506, 14 (2025).

    Google Scholar 

  57. Brinkmann, V. et al. Neutrophil extracellular traps kill bacteria. Science 303, 1532–1535 (2004).

    Google Scholar 

  58. Wang, F. et al. Lipidomic analysis of plant-derived extracellular vesicles for guidance of potential anti-cancer therapy. Bioact. Mater. 46, 82–96 (2025).

    Google Scholar 

  59. Mao, Q.-Q. et al. Bioactive compounds and bioactivities of Ginger (Zingiber officinale Roscoe). Foods 8, 185 (2019).

  60. Muhammad, T., Ikram, M., Ullah, R., Rehman, S. U., Kim, M. O. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κB signaling. Nutrients 11, 648 (2019).

  61. Guan, Y. et al. Hesperidin alleviates endothelial cell inflammation and apoptosis of Kawasaki disease through inhibiting the TLR4/IĸBα/NF-ĸB pathway. Chem. Biol. Interact. 411, 111445 (2025).

    Google Scholar 

  62. Wang, X. et al. Complanatuside alleviates inflammatory cell damage induced by pro-inflammatory cytokines in skin keratinocytes. Front Chem. 10, 909651 (2022).

    Google Scholar 

  63. Xu, Y. et al. Complanatuside A improves functional recovery after spinal cord injury through inhibiting JNK signaling-mediated microglial activation. Eur. J. Pharm. 965, 176287 (2024).

    Google Scholar 

  64. Kageura, T. et al. Inhibitors from rhubarb on lipopolysaccharide-induced nitric oxide production in macrophages: structural requirements of stilbenes for the activity. Bioorg. Med Chem. 9, 1887–1893 (2001).

    Google Scholar 

  65. Hu, L. et al. An unusual piceatannol dimer from Rheum austral D. Don with antioxidant activity. Molecules 19, 11453–11464 (2014).

    Google Scholar 

  66. Luyen, B. T. T. et al. A new phenolic component from Triticum aestivum sprouts and its effects on LPS-stimulated production of nitric oxide and TNF-α in RAW 264.7 cells. Phytother. Res. 28, 1064–1070 (2014).

    Google Scholar 

  67. Cheel, J., Theoduloz, C., Rodríguez, J. & Schmeda-Hirschmann, G. Free radical scavengers and antioxidants from Lemongrass (Cymbopogon citratus (DC.) Stapf.). J. Agric Food Chem. 53, 2511–2517 (2005).

    Google Scholar 

  68. Gerritzen, M. J. H., Martens, D. E., Wijffels, R. H., van der Pol, L. & Stork, M. Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnol. Adv. 35, 565–574 (2017).

    Google Scholar 

  69. Lan, X. et al. Tas2r105 ameliorates gut inflammation, possibly through influencing the gut microbiota and metabolites. mSystems 10, e0155624 (2025).

    Google Scholar 

  70. Xu, G. et al. Lysophosphatidylethanolamine improves diastolic dysfunction by alleviating mitochondrial injury in the aging heart. J. Lipid Res. 66, 100713 (2025).

    Google Scholar 

  71. Hung, N. D., Kim, M. R. & Sok, D.-E. 2-Polyunsaturated acyl lysophosphatidylethanolamine attenuates inflammatory response in zymosan A-induced peritonitis in mice. Lipids 46, 893–906 (2011).

    Google Scholar 

  72. Cheng, D. et al. An advanced inhalable dry powder, mucus-penetrating aerosol platform: Bridging Andrographolide delivery with clinical translation. Biomaterials 322, 123401 (2025).

    Google Scholar 

  73. Cheng, D. et al. High-performance lung-targeted bio-responsive platform for severe colistin-resistant bacterial pneumonia therapy. Bioact. Mater. 35, 517–533 (2024).

    Google Scholar 

  74. Jesudason, T. WHO publishes updated list of bacterial priority pathogens. Lancet Microbe 5, 100940 (2024).

    Google Scholar 

  75. Brown, E. D. & Wright, G. D. Antibacterial drug discovery in the resistance era. Nature 529, 336–343 (2016).

    Google Scholar 

  76. Landersdorfer, C. B. et al. Pharmacokinetics/pharmacodynamics of systemically administered polymyxin B against Klebsiella pneumoniae in mouse thigh and lung infection models. J. Antimicrob. Chemother. 73, 462–468 (2018).

    Google Scholar 

  77. Zha, L. et al. Intravenous polymyxin B as adjunctive therapy to high-dose tigecycline for the treatment of nosocomial pneumonia due to carbapenem-resistant Acinetobacter baumannii and Klebsiella pneumoniae: a propensity score-matched cohort study. Antibiotics (Basel) 12, 273 (2023).

  78. Tong, R. et al. Intravenous combined with aerosolised polymyxins vs intravenous polymyxins monotherapy for ventilator-associated pneumonia: a systematic review and meta-analysis. Int J. Antimicrob. Agents 64, 11 (2024).

    Google Scholar 

  79. Zhuang, H. H. et al. The efficacy of polymyxin B in treating stroke-associated pneumonia with carbapenem-resistant Gram-negative bacteria infections: a multicenter real-world study using propensity score matching. Front Pharm. 16, 11 (2025).

    Google Scholar 

  80. Andersson, D. I. & Hughes, D. Microbiological effects of sublethal levels of antibiotics. Nat. Rev. Microbiol. 12, 465–478 (2014).

    Google Scholar 

Download references