Nitrogen starvation induces arbuscular mycorrhizal fungi to optimize resource allocation in sugarcane roots via suppression of basal metabolism

nitrogen-starvation-induces-arbuscular-mycorrhizal-fungi-to-optimize-resource-allocation-in-sugarcane-roots-via-suppression-of-basal-metabolism
Nitrogen starvation induces arbuscular mycorrhizal fungi to optimize resource allocation in sugarcane roots via suppression of basal metabolism

References

  1. Coskun, D., Britto, D. T., Shi, W. & Kronzucker, H. J. Nitrogen transformations in modern agriculture and the role of biological nitrification inhibition. Nat. Plants 3, 17074 (2017).

    Google Scholar 

  2. You, L. et al. Optimized agricultural management reduces global cropland nitrogen losses to air and water. Nat. Food 5, 995–1004 (2024).

    Google Scholar 

  3. Robinson, N., Vogt, J., Lakshmanan, P. & Schmidt, S. Nitrogen physiology of sugarcane. Sugarcane: Physiology, Biochemistry, and Functional Biology, 169-195 https://doi.org/10.1002/9781118771280.ch8 (2013).

  4. Yang, W., Li, Z., Wang, J., Wu, P. & Zhang, Y. Crop yield, nitrogen acquisition and sugarcane quality as affected by interspecific competition and nitrogen application. Field Crop Res. 146, 44–50 (2013).

    Google Scholar 

  5. Cardozo, N. P., de Oliveira Bordonal, R. & La, S. N. Sustainable intensification of sugarcane production under irrigation systems, considering climate interactions and agricultural efficiency. J. Clean. Prod. 204, 861–871 (2018).

    Google Scholar 

  6. Vandenberghe, L. P. S. et al. Beyond sugar and ethanol: the future of sugarcane biorefineries in Brazil. Renew. Sustain. Energy Rev. 167, 112721 (2022).

    Google Scholar 

  7. Parniske, M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat. Rev. Microbiol. 6, 763–775 (2008).

    Google Scholar 

  8. Wang, J. et al. Arbuscular mycorrhizal fungi regulate the diversity–invasion resistance relationship by influencing the role of complementarity and selection effects. N. Phytol. 246, 317–330 (2025).

    Google Scholar 

  9. Willing, C. E., Wan, J., Yeam, J. J., Cessna, A. M. & Peay, K. G. Arbuscular mycorrhizal fungi equalize differences in plant fitness and facilitate plant species coexistence through niche differentiation. Nat. Ecol. Evol. 8, 2058–2071 (2024).

    Google Scholar 

  10. Wang, G., Jin, Z., George, T. S., Feng, G. & Zhang, L. Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover. N. Phytol. 238, 2578–2593 (2023).

    Google Scholar 

  11. Wang, L., Zhang, L., George, T. S. & Feng, G. Hyphosphere core taxa link plant-arbuscular mycorrhizal fungi combinations to soil organic phosphorus mineralization. Soil Biol. Biochem. 201, 109647 (2025).

    Google Scholar 

  12. Nagy, R., Drissner, D., Amrhein, N., Jakobsen, I. & Bucher, M. Mycorrhizal phosphate uptake pathway in tomato is phosphorus-repressible and transcriptionally regulated. N. Phytol. 181, 950–959 (2009).

    Google Scholar 

  13. DUAN, S. et al. The interplay of direct and mycorrhizal pathways for plants to efficiently acquire phosphorus from soil. Front. Agric. Sci. Eng. 12, 47–56 (2025).

  14. Martin, F. M. & van der Heijden, M. G. A. The mycorrhizal symbiosis: research frontiers in genomics, ecology, and agricultural application. N. Phytol. 242, 1486–1506 (2024).

    Google Scholar 

  15. Sun, K. et al. Hyphosphere microorganisms facilitate hyphal spreading and root colonization of plant symbiotic fungus in ammonium-enriched soil. ISME J. 17, 1626–1638 (2023).

    Google Scholar 

  16. Wang, F. et al. Exploring the secrets of hyphosphere of arbuscular mycorrhizal fungi: processes and ecological functions. Plant Soil 481, 1–22 (2022).

    Google Scholar 

  17. Monika, Y. N. et al. Arbuscular Mycorrhizal fungi: a potential candidate for nitrogen fixation. in (eds Vaishnav A., Arya S. S. & Choudhary D. K.) Plant Stress Mitigators: Action and Application, 217–234 (Springer Nature, 2022).

  18. Tian, C. et al. Regulation of the nitrogen transfer pathway in the arbuscular mycorrhizal symbiosis: gene characterization and the coordination of expression with nitrogen flux. Plant Physiol. 153, 1175–1187 (2010).

    Google Scholar 

  19. Sajjad, N. et al. 12 – Nitrogen uptake, assimilation, and mobilization in plants under abiotic stress. in (eds Roychoudhury, A., Tripathi, D. K. & Deshmukh, R.) Transporters and Plant Osmotic Stress, 215–233 (Academic Press, 2021).

  20. Wipf, D. et al. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. N. Phytol. 223, 1127–1142 (2019).

    Google Scholar 

  21. Chen, Y. et al. Transcriptomic analysis of nitrogen metabolism pathways in Klebsiella aerogenes under nitrogen-rich conditions. Front. Microbiol. 15, 1323160 (2024).

    Google Scholar 

  22. Hetrick, B. A. D. Mycorrhizas and root architecture. Experientia 47, 355–362 (1991).

    Google Scholar 

  23. Nair, A., Thulasiram, H. V. & Bhargava, S. Role of jasmonate in modulation of mycorrhizae-induced resistance against fungal pathogens. in (eds Champion, A. & Laplaze, L.) Jasmonate in Plant Biology: Methods and Protocols, 109–115 (Springer, 2020).

  24. Lanfranco, L., Fiorilli, V. & Gutjahr, C. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. N. Phytol. 220, 1031–1046 (2018).

    Google Scholar 

  25. Manck-Götzenberger, J. & Requena, N. Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the potato sweet sugar transporter family. Front. Plant Sci. 7, 487 (2016).

    Google Scholar 

  26. Zhou, J. et al. SYMRK significantly affected AMF symbiosis and plant growth in maize. Plant Sci. 353, 112427 (2025).

    Google Scholar 

  27. Ferrol, N., Azcón-Aguilar, C. & Pérez-Tienda, J. Review: arbuscular mycorrhizas as key players in sustainable plant phosphorus acquisition: an overview on the mechanisms involved. Plant Sci. 280, 441–447 (2019).

    Google Scholar 

  28. Wang, S. et al. OsNLP3 and OsPHR2 orchestrate direct and mycorrhizal pathways for nitrate uptake by regulating NAR2.1-NRT2s complexes in rice. Proc. Natl. Acad. Sci. USA 122, e1878622174 (2025).

    Google Scholar 

  29. Cerda, A. & Alvarez, J. M. Insights into molecular links and transcription networks integrating drought stress and nitrogen signaling. N. Phytol. 241, 560–566 (2024).

    Google Scholar 

  30. Farhan, M. et al. Plant nitrogen metabolism: balancing resilience to nutritional stress and abiotic challenges. Phyton Int. J. Exp. Bot. 93, 581–609 (2024).

    Google Scholar 

  31. Shanks, C. M. et al. Nitrogen sensing and regulatory networks: it’s about time and space. Plant Cell 36, 1482–1503 (2024).

    Google Scholar 

  32. Forde, B. G. Nitrogen signalling pathways shaping root system architecture: an update. Curr. Opin. Plant Biol. 21, 30–36 (2014).

    Google Scholar 

  33. Isah, T. Stress and defense responses in plant secondary metabolites production. Biol. Res. 52, 39 (2019).

    Google Scholar 

  34. Johnson, N. C., Wilson, G. W. T., Bowker, M. A., Wilson, J. A. & Miller, R. M. Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc. Natl. Acad. Sci. USA 107, 2093–2098 (2010).

    Google Scholar 

  35. Treseder, K. K. A. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies. New Phytol. 164, 347–355 (2004).

    Google Scholar 

  36. Govindarajulu, M. et al. Nitrogen transfer in the arbuscular mycorrhizal symbiosis. Nature 435, 819–823 (2005).

    Google Scholar 

  37. Hodge, A. & Fitter, A. H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl. Acad. Sci. USA 107, 13754–13759 (2010).

    Google Scholar 

  38. Lin, F. et al. Emerging roles of phosphoinositide-associated membrane trafficking in plant stress responses. J. Genet Genom. 49, 726–734 (2022).

    Google Scholar 

  39. Kumar, V., Thakur, J. K. & Prasad, M. Histone acetylation dynamics regulating plant development and stress responses. Cell Mol. Life Sci. 78, 4467–4486 (2021).

    Google Scholar 

  40. Wang, Q., Yung, W., Wang, Z. & Lam, H. The histone modification H3K4me3 marks functional genes in soybean nodules. Genomics 112, 5282–5294 (2020).

    Google Scholar 

  41. Gutjahr, C. et al. Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex. Science 350, 1521–1524 (2015).

    Google Scholar 

  42. Anani, O. A., Abel, I., Olomukoro, J. O. & Onyeachu, I. B. Insights to proteomics and metabolomics metal chelation in food crops. J. Proteins Proteom. 13, 159–173 (2022).

    Google Scholar 

  43. Wu, D., Saleem, M., He, T. & He, G. The mechanism of metal homeostasis in plants: a new view on the synergistic regulation pathway of membrane proteins, lipids and metal ions. Membranes 11, 984 (2021).

  44. Donaldson, J. G. & Jackson, C. L. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Bio. 12, 362–375 (2011).

    Google Scholar 

  45. Gao, Y. et al. Analysis of the molecular and biochemical mechanisms involved in the symbiotic relationship between arbuscular mycorrhiza fungi and Manihot esculenta Crantz. Front. Plant Sci. 14, 1130924 (2023).

    Google Scholar 

  46. Limpens, E. & Geurts, R. Transcriptional regulation of nutrient exchange in arbuscular mycorrhizal symbiosis. Mol. Plant 11, 1421–1423 (2018).

    Google Scholar 

  47. Kabir, A. H. et al. Arbuscular mycorrhizal fungi alleviate Fe-deficiency symptoms in sunflower by increasing iron uptake and its availability along with antioxidant defense. Plant Physiol. Biochem. 150, 254–262 (2020).

    Google Scholar 

  48. Moreno Jiménez, E., Ferrol, N., Corradi, N., Peñalosa, J. M. & Rillig, M. C. The potential of arbuscular mycorrhizal fungi to enhance metallic micronutrient uptake and mitigate food contamination in agriculture: prospects and challenges. N. Phytol. 242, 1441–1447 (2024).

    Google Scholar 

  49. Rahman, M. A. et al. Arbuscular mycorrhizal symbiosis mitigates iron (Fe)-deficiency retardation in Alfalfa (Medicago sativa L.) through the enhancement of Fe accumulation and sulfur-assisted antioxidant defense. Int. J. Mol. Sci. 21, 6 (2020).

    Google Scholar 

  50. Jin, X. et al. Adaptation strategies of seedling root response to nitrogen and phosphorus addition. Plants 13, 536 (2024).

  51. Yang, T. et al. Global transcriptomic analysis reveals candidate genes associated with different phosphorus acquisition strategies among soybean varieties. Front. Plant Sci. 13, 0–0 (2022).

    Google Scholar 

  52. Luan, M. et al. Transport and homeostasis of potassium and phosphate: limiting factors for sustainable crop production. J. Exp. Bot. 68, 3091–3105 (2017).

    Google Scholar 

  53. Wang, Y., Chen, Y. & Wu, W. Potassium and phosphorus transport and signaling in plants. J. Integr. Plant Biol. 63, 34–52 (2021).

    Google Scholar 

  54. DiTusa, S. F. et al. A member of the Phosphate transporter 1 (Pht1) family from the arsenic-hyperaccumulating fern Pteris vittata is a high-affinity arsenate transporter. N. Phytol. 209, 762–772 (2016).

    Google Scholar 

  55. Lu, Y. et al. Structural basis for the activity regulation of a potassium channel AKT1 from Arabidopsis. Nat. Commun. 13, 5682 (2022).

    Google Scholar 

  56. Yang, C. et al. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport. Mol. Cell 56, 414–424 (2014).

    Google Scholar 

  57. Zhang, Y. & Fernie, A. R. The role of TCA cycle enzymes in plants. Adv. Biol. 7, 2200238 (2023).

    Google Scholar 

  58. Huang, S., Braun, H., Gawryluk, R. M. R. & Millar, A. H. Mitochondrial complex II of plants: subunit composition, assembly, and function in respiration and signaling. Plant J. 98, 405–417 (2019).

    Google Scholar 

  59. Luginbuehl, L. H. et al. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356, 1175–1178 (2017).

    Google Scholar 

  60. Brinkmann-Chen, S. et al. General approach to reversing ketol-acid reductoisomerase cofactor dependence from NADPH to NADH. Proc. Natl. Acad. Sci. USA 110, 10946–10951 (2013).

    Google Scholar 

  61. Wong, S. H., Lonhienne, T. G., Winzor, D. J., Schenk, G. & Guddat, L. W. Bacterial and plant ketol-acid reductoisomerases have different mechanisms of induced fit during the catalytic cycle. J. Mol. Biol. 424, 168–179 (2012).

    Google Scholar 

  62. Fraisier, V., Gojon, A., Tillard, P. & Vedele, F. D. Constitutive expression of a putative high-affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for post-transcriptional regulation by a reduced nitrogen source. Plant J. 23, 489–496 (2000).

    Google Scholar 

  63. Hayami, N. & Yamamoto, Y. Y. Primary metabolism and transcriptional regulation in higher plants. Rev. Agric. Sci. 9, 117–127 (2021).

    Google Scholar 

  64. Afitlhile, M., Fukushige, H., Nishimura, M. & Hildebrand, D. F. A defect in glyoxysomal fatty acid β-oxidation reduces jasmonic acid accumulation in Arabidopsis. Plant Physiol. Biochem. 43, 603–609 (2005).

  65. Wasternack, C. & Song, S. Jasmonates: biosynthesis, metabolism, and signaling by proteins activating and repressing transcription. J. Exp. Bot. 68, 1303–1321 (2017).

    Google Scholar 

  66. Guo, D. et al. The jasmonate pathway promotes nodule symbiosis and suppresses host plant defense in Medicago truncatula. Mol. Plant 17, 1183–1203 (2024).

    Google Scholar 

  67. Kaur, S., Campbell, B. J. & Suseela, V. Root metabolome of plant–arbuscular mycorrhizal symbiosis mirrors the mutualistic or parasitic mycorrhizal phenotype. N. Phytol. 234, 672–687 (2022).

    Google Scholar 

  68. Akram, N. A., Shafiq, F. & Ashraf, M. Ascorbic acid-A potential oxidant scavenger and its role in plant development and abiotic stress tolerance. Front. Plant Sci. 8, 613 (2017).

    Google Scholar 

  69. Miret, J. A. & Müller, M. AsA/DHA redox pair influencing plant growth and stress tolerance. in (eds Hossain, M. A. et al.) Ascorbic Acid in Plant Growth, Development and Stress Tolerance, 297–319 (Springer International Publishing, 2017).

  70. Belmondo, S. et al. NADPH oxidases in the arbuscular mycorrhizal symbiosis. Plant Signal. Behav. 11, e1165379 (2016).

    Google Scholar 

  71. Fonseca-García, C. et al. Transcriptome analysis of the differential effect of the NADPH oxidase gene RbohB in Phaseolus vulgaris roots following Rhizobium tropici and Rhizophagus irregularis inoculation. BMC Genom. 20, 800 (2019).

    Google Scholar 

  72. Arvola, R., Abshire, E., Bohn, J. & Goldstrohm, A. C. Mechanisms of post-transcriptional gene regulation. in (eds Menon, P. K. M. J. & Goldstrohm, P. A.) Post-transcriptional Mechanisms in Endocrine Regulation, 1–36 (Springer International Publishing, 2016).

  73. Ruiz-Lozano, J. M. et al. Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato. Plant Cell Environ. 39, 441–452 (2016).

    Google Scholar 

  74. Wang, Y. & Wu, Q. S. Influence of sugar metabolism on the dialogue between arbuscular mycorrhizal fungi and plants. Hortic. Adv. 1, 0–0 (2023).

    Google Scholar 

  75. Li, H. et al. Physio-biochemical and transcriptomic features of arbuscular mycorrhizal fungi relieving cadmium stress in wheat. Antioxidants 11, 2390 (2022).

    Google Scholar 

  76. Mishra, A. K. et al. Potentials and prospects of AMF for soil carbon sequestration and nutrient cycling in rice-based cropping system. in (eds Parihar, M., Rakshit, A., Adholeya, A. & Chen, Y.) Arbuscular Mycorrhizal Fungi in Sustainable Agriculture: Nutrient and Crop Management, 113–129 (Springer Nature, 2024).

  77. Wu, J. et al. Arbuscular mycorrhiza augments aluminum tolerance in white clover (Trifolium repens L.) by strengthening the ascorbate-glutathione cycle and phosphorus acquisition. Physiol. Mol. Biol. Plants 29, 1647–1661 (2023).

    Google Scholar 

  78. Scheublin, T. R., Sanders, I. R., Keel, C. & van der Meer, J. R. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J. 4, 752–763 (2010).

    Google Scholar 

  79. Marschner, P. & Baumann, K. Changes in bacterial community structure induced by mycorrhizal colonisation in split-root maize. Plant Soil. 251, 279-289 (2003).

  80. Chen, E., Liao, H., Chen, B. & Shaolin, P. Arbuscular mycorrhizal fungi are a double-edged sword in plant invasion controlled by phosphorus concentration. N. Phytol. 226, 295–300 (2020).

  81. He, D. et al. Flavonoid-attracted Aeromonas sp. from the Arabidopsis root microbiome enhances plant dehydration resistance. ISME J. 16, 2622–2632 (2022).

    Google Scholar 

  82. Abdel-Lateif, K., Bogusz, D. & Hocher, V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal. Behav. 7, 636–641 (2012).

    Google Scholar 

  83. Besseau, S. et al. Flavonoid accumulation in arabidopsis repressed in lignin synthesis affects auxin transport and plant growth. Plant Cell 19, 148–162 (2007).

    Google Scholar 

  84. Brown, D. E. et al. Flavonoids act as negative regulators of auxin transport in vivo in Arabidopsis. Plant Physiol. 126, 524–535 (2001).

    Google Scholar 

  85. Ji, Z., Belfield, E. J., Li, S., Fu, X. D. & Harberd, N. P. Discovery of a second-site nia2 mutation in the background of multiple ArabidopsisPIF-related mutants containing the pif3-3 allele. N. Phytol. 241, 17–23 (2023).

    Google Scholar 

  86. Medici, A. et al. AtNIGT1/HRS1 integrates nitrate and phosphate signals at the Arabidopsis root tip. Nat. Commun. 6, 6274 (2015).

    Google Scholar 

  87. Kun, Y. et al. Low phosphorus promotes NSP1–NSP2 heterodimerization to enhance strigolactone biosynthesis and regulate shoot and root architecture in rice. Mol. Plant 16, 1811–1831 (2023).

    Google Scholar 

  88. Singh, S., Katzer, K., Lambert, J., Cerri, M. & Parniske, M. CYCLOPS, a DNA-binding transcriptional activator, orchestrates symbiotic root nodule development. Cell Host Microbe 15, 139–152 (2014).

    Google Scholar 

  89. Tatebe, H. & Shiozaki, K. Chapter 91 – Protein serine/threonine-phosphatase 2C (PP2C). in (eds Bradshaw, R. A. & Dennis, E. A.) Handbook of Cell Signaling (Second Edition), 711–716 (Academic Press, 2010).

  90. Wang, J., Munyampundu, J., Xu, Y. & Cai, X. Phylogeny of plant calcium and calmodulin-dependent protein kinases (CCaMKs) and functional analyses of tomato CCaMK in disease resistance. Front. Plant Sci. 6, 1075 (2015).

    Google Scholar 

  91. Sharma, A., Jain, K. K., Jain, A., Kidwai, M. & Kuhad, R. C. Bifunctional in vivo role of laccase exploited in multiple biotechnological applications. Appl. Microbiol Biot. 102, 10327–10343 (2018).

    Google Scholar 

  92. Strong, P. J. & And Claus, H. Laccase: a review of its past and its future in bioremediation. Crit. Rev. Environ. Sci. Tec. 41, 373–434 (2011).

    Google Scholar 

  93. Bell, C. A., Magkourilou, E., Ault, J. R., Urwin, P. E. & Field, K. J. Phytophagy impacts the quality and quantity of plant carbon resources acquired by mutualistic arbuscular mycorrhizal fungi. Nat. Commun. 15, 801 (2024).

    Google Scholar 

  94. Jin, H. et al. The uptake, metabolism, transport and transfer of nitrogen in an arbuscular mycorrhizal symbiosis. N. Phytol. 168, 687–696 (2005).

    Google Scholar 

  95. Dong, S. Study on the effects of different nitrogen, phosphorus, and potassium fertilizer ratios on sugarcane yield and quality. Sugarcane Ind. 000, 16–18 (2007).

    Google Scholar 

  96. Chen, Y. Study on nitrogen fertilizer requirements and optimal application periods for seed sugarcane. Guangxi Sugar Ind. 000, 47–49 (2003).

    Google Scholar 

  97. Wang, Y., Zhang, S. & Zhang, M. Arbuscular mycorrhizal fungal resources and germplasm resources in China (China Agriculture Press, 2012).

  98. Xu, S. GRZJ method to stain arbuscular mycorrhiza fungi in the roots of Guangxi Camellia nitidissima. Chin. J. Trop. Crops 45, 215–224 (2024).

    Google Scholar 

  99. Trouvelot, A., Kough, J. L. & Gianinazzi-Pearson, V. Mesure du taux de mycorhization VA d’un système radiculaire. Recherche de méthodes d’estimation ayant une signification fonctionnelle. in (eds Pearson, G.- V. & Gianinazzi, S.) Physiological and Genetical Aspects of Mycorrhizae (INRA Press, 1986).

  100. Bao, S. Soil agricultural chemical analysis, 3rd edn (China Agricultural Press, 2000).

  101. Kakhki, M. P. & Heidary, M. TRIzol-based RNA extraction: a reliable method for gene expression studies (University of Tehran, 2014).

  102. Souza, G. M. et al. Supporting data for Assembly of the 373K gene space of the polyploid sugarcane genome reveals reservoirsof functional diversity in the world’s leading biomass crop. Gigascience. 8(12), giz129 (2019).

  103. Kim, D., Langmead, B. & Salzberg, S. L. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    Google Scholar 

  104. Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).

    Google Scholar 

  105. Pertea et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 33, 290–295 (2015).

    Google Scholar 

  106. Li, J. et al. TMTpro reagents: a set of isobaric labeling mass tags enables simultaneous proteome-wide measurements across 16 samples. Nat. Methods 17, 399–404 (2020).

    Google Scholar 

  107. Kenneth, J. L., & Thomas, D. S. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT. Methods 25, 402–408 (2001).

    Google Scholar 

  108. Liu, Q. et al. Bio-fertilizer affects structural dynamics, function, and network patterns of the sugarcane rhizospheric microbiota. Micro. Ecol. 84, 1195–1211 (2022).

    Google Scholar 

  109. Wang, J. et al. Serum metabolomics for early diagnosis of esophageal squamous cell carcinoma by UHPLC-QTOF/MS. Metabolomics 12, 116 (2016).

    Google Scholar 

  110. Han, C. et al. Majorbio Cloud 2024: update single-cell and multiomics workflows. iMeta 3, e217 (2024).

    Google Scholar 

Download references