Novel histological observation method using the scattered light of unstained collagen sections

novel-histological-observation-method-using-the-scattered-light-of-unstained-collagen-sections
Novel histological observation method using the scattered light of unstained collagen sections

References

  1. Somnay, K. et al. Liver fibrosis leading to cirrhosis: Basic mechanisms and clinical perspectives. Biomedicines 12, 2229 (2024).

    Google Scholar 

  2. Spagnolo, P. et al. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol. Ther. 222, 107798 (2021).

    Google Scholar 

  3. Ekstein, S. F., Wyles, S. P., Moran, S. L. & Meves, A. Keloids: a review of therapeutic management. Int. J. Dermatol. 60, 661–671 (2021).

    Google Scholar 

  4. Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis: From inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).

    Google Scholar 

  5. Wu, X. et al. CXCL12/CXCR4: An amazing challenge and opportunity in the fight against fibrosis. Ageing Res. Rev. 83, 101809 (2023).

    Google Scholar 

  6. Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54, 903–915 (2021).

    Google Scholar 

  7. Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).

    Google Scholar 

  8. Finnerty, J. P., Ponnuswamy, A., Dutta, P., Abdelaziz, A. & Kamil, H. Efficacy of antifibrotic drugs, nintedanib and pirfenidone, in treatment of progressive pulmonary fibrosis in both idiopathic pulmonary fibrosis (IPF) and non-IPF: A systematic review and meta-analysis. BMC Pulm. Med. 21, 411 (2021).

    Google Scholar 

  9. Zhao, M. et al. Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct. Target. Ther. 7, 206 (2022).

    Google Scholar 

  10. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: From mechanisms to medicines. Nature 587, 555–566 (2020).

    Google Scholar 

  11. Beausang, E., Floyd, H., Dunn, K. W., Orton, C. I. & Ferguson, M. W. A new quantitative scale for clinical scar assessment. Plast. Reconstr. Surg. 102, 1954–1961 (1998).

    Google Scholar 

  12. Draaijers, L. J. et al. The patient and observer scar assessment scale: A reliable and feasible tool for scar evaluation. Plast. Reconstr. Surg. 113, 1960–1965 (2004) (discussion 1966-7).

    Google Scholar 

  13. Gardeazabal, L. & Izeta, A. Elastin and collagen fibres in cutaneous wound healing. Exp. Dermatol. 33, e15052 (2024).

    Google Scholar 

  14. Singh, D., Rai, V. & Agrawal, D. K. Regulation of collagen I and collagen III in tissue injury and regeneration. Cardiol. Cardiovasc. Med. 7, 5–16 (2023).

    Google Scholar 

  15. Xue, M. & Jackson, C. J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care (New Rochelle) 4, 119–136 (2015).

    Google Scholar 

  16. Mori, R. et al. Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring. Am. J. Pathol. 184, 2465–2479 (2014).

    Google Scholar 

  17. Lattouf, R. et al. Picrosirius red staining: A useful tool to appraise collagen networks in normal and pathological tissues: A useful tool to appraise collagen networks in normal and pathological tissues. J. Histochem. Cytochem. 62, 751–758 (2014).

    Google Scholar 

  18. Prost-Squarcioni, C., Fraitag, S., Heller, M. & Boehm, N. Functional histology of dermis. Ann. Dermatol. Venereol. 135, 1S5-20 (2008).

    Google Scholar 

  19. Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).

    Google Scholar 

  20. Wang, K. et al. Extracellular matrix stiffness—The central cue for skin fibrosis. Front. Mol. Biosci. 10, 1132353 (2023).

    Google Scholar 

  21. Tracy, L. E., Minasian, R. A. & Caterson, E. J. Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care (New Rochelle) 5, 119–136 (2016).

    Google Scholar 

  22. Verhaegen, P. D. H. M. et al. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis. Wound Repair Regen. 17, 649–656 (2009).

    Google Scholar 

  23. Salzer, M. C. et al. Identity noise and adipogenic traits characterize dermal fibroblast aging. Cell 175, 1575-1590.e22 (2018).

    Google Scholar 

  24. Gao, J. et al. Age-related changes in the ratio of Type I/III collagen and fibril diameter in mouse skin. Regen. Biomater. 10, rbac110 (2023).

    Google Scholar 

  25. Chen, X., Nadiarynkh, O., Plotnikov, S. & Campagnola, P. J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7, 654–669 (2012).

    Google Scholar 

  26. Liu, Y., Keikhosravi, A., Mehta, G. S., Drifka, C. R. & Eliceiri, K. W. Methods for quantifying fibrillar collagen alignment. Methods Mol. Biol. 1627, 429–451 (2017).

    Google Scholar 

  27. Su, P.-J. et al. Discrimination of collagen in normal and pathological skin dermis through second-order susceptibility microscopy. Opt. Express 17, 11161–11171 (2009).

    Google Scholar 

  28. Mostaço-Guidolin, L. B. et al. Collagen morphology and texture analysis: From statistics to classification. Sci. Rep. 3, 2190 (2013).

    Google Scholar 

  29. Shimano, M., Asano, Y., Ishihara, S., Bise, R. & Sato, I. Imaging scattering characteristics of tissue in transmitted microscopy. in Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 236–245 (Springer International Publishing, Cham, 2020).

  30. Ogura, Y. et al. Analysis of optical absorption of photoaged human skin using a high-frequency illumination microscopy analysis system. Exp. Dermatol. 32, 1402–1411 (2023).

    Google Scholar 

  31. Nayar, S. K., Krishnan, G., Grossberg, M. D. & Raskar, R. Fast separation of direct and global components of a scene using high frequency illumination. in ACM SIGGRAPH 2006 Papers on – SIGGRAPH ‘06 vol. 25 935–944 (ACM Press, New York, New York, USA, 2006).

  32. Kubo, H. et al. Programmable non-epipolar indirect light transport: Capture and analysis. IEEE Trans. Vis. Comput. Graph. 27, 2421–2436 (2019).

    Google Scholar 

  33. Shimano, M., Bise, R., Zheng, Y. & Sato, I. Separation of transmitted light and scattering components in transmitted microscopy. In Lecture Notes in Computer Science 12–20 (Springer International Publishing, Cham, 2017).

  34. Chan, J. K. C. The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology. Int. J. Surg. Pathol. 22, 12–32 (2014).

    Google Scholar 

  35. Zhou, B. et al. Impaired collagen fibril assembly in keloids with enhanced expression of lumican and collagen V. Arch. Biochem. Biophys. 697, 108676 (2021).

    Google Scholar 

  36. Nishizawa, N., Al-Qadi, B. & Kuchimaru, T. Angular optimization for cancer identification with circularly polarized light. J. Biophotonics 14, e202000380 (2021).

    Google Scholar 

  37. Borovkova, M. et al. Evaluating β-amyloidosis progression in Alzheimer’s disease with Mueller polarimetry. Biomed. Opt. Express 11, 4509–4519 (2020).

    Google Scholar 

  38. Freitas-Rodríguez, S., Folgueras, A. R. & López-Otín, C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim. Biophys. Acta Mol. Cell Res. 1864, 2015–2025 (2017).

    Google Scholar 

  39. Kiss, N. et al. Quantitative analysis on ex vivo nonlinear microscopy images of basal cell carcinoma samples in comparison to healthy skin. Pathol. Oncol. Res. 25, 1015–1021 (2019).

    Google Scholar 

  40. Feng, X. et al. Biophysical basis of skin cancer margin assessment using Raman spectroscopy. Biomed. Opt. Express 10, 104–118 (2019).

    Google Scholar 

  41. Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M. & Ohtsuki, M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 17, 868 (2016).

    Google Scholar 

Download references