References
-
Somnay, K. et al. Liver fibrosis leading to cirrhosis: Basic mechanisms and clinical perspectives. Biomedicines 12, 2229 (2024).
-
Spagnolo, P. et al. Idiopathic pulmonary fibrosis: Disease mechanisms and drug development. Pharmacol. Ther. 222, 107798 (2021).
-
Ekstein, S. F., Wyles, S. P., Moran, S. L. & Meves, A. Keloids: a review of therapeutic management. Int. J. Dermatol. 60, 661–671 (2021).
-
Prabhu, S. D. & Frangogiannis, N. G. The biological basis for cardiac repair after myocardial infarction: From inflammation to fibrosis: From inflammation to fibrosis. Circ. Res. 119, 91–112 (2016).
-
Wu, X. et al. CXCL12/CXCR4: An amazing challenge and opportunity in the fight against fibrosis. Ageing Res. Rev. 83, 101809 (2023).
-
Buechler, M. B., Fu, W. & Turley, S. J. Fibroblast-macrophage reciprocal interactions in health, fibrosis, and cancer. Immunity 54, 903–915 (2021).
-
Talbott, H. E., Mascharak, S., Griffin, M., Wan, D. C. & Longaker, M. T. Wound healing, fibroblast heterogeneity, and fibrosis. Cell Stem Cell 29, 1161–1180 (2022).
-
Finnerty, J. P., Ponnuswamy, A., Dutta, P., Abdelaziz, A. & Kamil, H. Efficacy of antifibrotic drugs, nintedanib and pirfenidone, in treatment of progressive pulmonary fibrosis in both idiopathic pulmonary fibrosis (IPF) and non-IPF: A systematic review and meta-analysis. BMC Pulm. Med. 21, 411 (2021).
-
Zhao, M. et al. Targeting fibrosis, mechanisms and cilinical trials. Signal Transduct. Target. Ther. 7, 206 (2022).
-
Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: From mechanisms to medicines. Nature 587, 555–566 (2020).
-
Beausang, E., Floyd, H., Dunn, K. W., Orton, C. I. & Ferguson, M. W. A new quantitative scale for clinical scar assessment. Plast. Reconstr. Surg. 102, 1954–1961 (1998).
-
Draaijers, L. J. et al. The patient and observer scar assessment scale: A reliable and feasible tool for scar evaluation. Plast. Reconstr. Surg. 113, 1960–1965 (2004) (discussion 1966-7).
-
Gardeazabal, L. & Izeta, A. Elastin and collagen fibres in cutaneous wound healing. Exp. Dermatol. 33, e15052 (2024).
-
Singh, D., Rai, V. & Agrawal, D. K. Regulation of collagen I and collagen III in tissue injury and regeneration. Cardiol. Cardiovasc. Med. 7, 5–16 (2023).
-
Xue, M. & Jackson, C. J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care (New Rochelle) 4, 119–136 (2015).
-
Mori, R. et al. Reduced FOXO1 expression accelerates skin wound healing and attenuates scarring. Am. J. Pathol. 184, 2465–2479 (2014).
-
Lattouf, R. et al. Picrosirius red staining: A useful tool to appraise collagen networks in normal and pathological tissues: A useful tool to appraise collagen networks in normal and pathological tissues. J. Histochem. Cytochem. 62, 751–758 (2014).
-
Prost-Squarcioni, C., Fraitag, S., Heller, M. & Boehm, N. Functional histology of dermis. Ann. Dermatol. Venereol. 135, 1S5-20 (2008).
-
Humphrey, J. D., Dufresne, E. R. & Schwartz, M. A. Mechanotransduction and extracellular matrix homeostasis. Nat. Rev. Mol. Cell Biol. 15, 802–812 (2014).
-
Wang, K. et al. Extracellular matrix stiffness—The central cue for skin fibrosis. Front. Mol. Biosci. 10, 1132353 (2023).
-
Tracy, L. E., Minasian, R. A. & Caterson, E. J. Extracellular matrix and dermal fibroblast function in the healing wound. Adv. Wound Care (New Rochelle) 5, 119–136 (2016).
-
Verhaegen, P. D. H. M. et al. Differences in collagen architecture between keloid, hypertrophic scar, normotrophic scar, and normal skin: An objective histopathological analysis. Wound Repair Regen. 17, 649–656 (2009).
-
Salzer, M. C. et al. Identity noise and adipogenic traits characterize dermal fibroblast aging. Cell 175, 1575-1590.e22 (2018).
-
Gao, J. et al. Age-related changes in the ratio of Type I/III collagen and fibril diameter in mouse skin. Regen. Biomater. 10, rbac110 (2023).
-
Chen, X., Nadiarynkh, O., Plotnikov, S. & Campagnola, P. J. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7, 654–669 (2012).
-
Liu, Y., Keikhosravi, A., Mehta, G. S., Drifka, C. R. & Eliceiri, K. W. Methods for quantifying fibrillar collagen alignment. Methods Mol. Biol. 1627, 429–451 (2017).
-
Su, P.-J. et al. Discrimination of collagen in normal and pathological skin dermis through second-order susceptibility microscopy. Opt. Express 17, 11161–11171 (2009).
-
Mostaço-Guidolin, L. B. et al. Collagen morphology and texture analysis: From statistics to classification. Sci. Rep. 3, 2190 (2013).
-
Shimano, M., Asano, Y., Ishihara, S., Bise, R. & Sato, I. Imaging scattering characteristics of tissue in transmitted microscopy. in Medical Image Computing and Computer Assisted Intervention – MICCAI 2020 236–245 (Springer International Publishing, Cham, 2020).
-
Ogura, Y. et al. Analysis of optical absorption of photoaged human skin using a high-frequency illumination microscopy analysis system. Exp. Dermatol. 32, 1402–1411 (2023).
-
Nayar, S. K., Krishnan, G., Grossberg, M. D. & Raskar, R. Fast separation of direct and global components of a scene using high frequency illumination. in ACM SIGGRAPH 2006 Papers on – SIGGRAPH ‘06 vol. 25 935–944 (ACM Press, New York, New York, USA, 2006).
-
Kubo, H. et al. Programmable non-epipolar indirect light transport: Capture and analysis. IEEE Trans. Vis. Comput. Graph. 27, 2421–2436 (2019).
-
Shimano, M., Bise, R., Zheng, Y. & Sato, I. Separation of transmitted light and scattering components in transmitted microscopy. In Lecture Notes in Computer Science 12–20 (Springer International Publishing, Cham, 2017).
-
Chan, J. K. C. The wonderful colors of the hematoxylin-eosin stain in diagnostic surgical pathology. Int. J. Surg. Pathol. 22, 12–32 (2014).
-
Zhou, B. et al. Impaired collagen fibril assembly in keloids with enhanced expression of lumican and collagen V. Arch. Biochem. Biophys. 697, 108676 (2021).
-
Nishizawa, N., Al-Qadi, B. & Kuchimaru, T. Angular optimization for cancer identification with circularly polarized light. J. Biophotonics 14, e202000380 (2021).
-
Borovkova, M. et al. Evaluating β-amyloidosis progression in Alzheimer’s disease with Mueller polarimetry. Biomed. Opt. Express 11, 4509–4519 (2020).
-
Freitas-Rodríguez, S., Folgueras, A. R. & López-Otín, C. The role of matrix metalloproteinases in aging: Tissue remodeling and beyond. Biochim. Biophys. Acta Mol. Cell Res. 1864, 2015–2025 (2017).
-
Kiss, N. et al. Quantitative analysis on ex vivo nonlinear microscopy images of basal cell carcinoma samples in comparison to healthy skin. Pathol. Oncol. Res. 25, 1015–1021 (2019).
-
Feng, X. et al. Biophysical basis of skin cancer margin assessment using Raman spectroscopy. Biomed. Opt. Express 10, 104–118 (2019).
-
Pittayapruek, P., Meephansan, J., Prapapan, O., Komine, M. & Ohtsuki, M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 17, 868 (2016).
