Optimization of antioxidant extraction from Citrullus colocynthis seed using response surface methodology

optimization-of-antioxidant-extraction-from-citrullus-colocynthis-seed-using-response-surface-methodology
Optimization of antioxidant extraction from Citrullus colocynthis seed using response surface methodology

References

  1. Mariod, A. A. & Jarret, R. L. Antioxidant, antimicrobial, and antidiabetic activities of Citrullus colocynthis seed oil. Multiple Biol. Activities Unconv. Seed Oils. 139–146. https://doi.org/10.1016/B978-0-12-824135-6.00005-2 (2022).

  2. Carocho, M., Morales, P. & Ferreira, I. C. F. R. Antioxidants: reviewing the chemistry, food applications, legislation and role as preservatives. Trends Food Sci. Technol. 71, 107–120. https://doi.org/10.1016/J.TIFS.2017.11.008 (2018).

  3. Shahidi, F. & Ambigaipalan, P. Phenolics and polyphenolics in foods, beverages and spices: antioxidant activity and health effects – A review. J. Funct. Foods. 18, 820–897. https://doi.org/10.1016/J.JFF.2015.06.018 (2015).

  4. Zhou, J. et al. Phenolic profiles, antioxidant activities and cytoprotective effects of different phenolic fractions from oil palm (Elaeis guineensis Jacq.) fruits treated by ultra-high pressure, Food Chem. 288, 68–77, (2019). https://doi.org/10.1016/j.foodchem.2019.03.002

  5. Wang, L. et al. Extraction methods for the releasing of bound phenolics from rubus Idaeus L. leaves and seeds. Ind. Crops Prod. 135, 1–9. https://doi.org/10.1016/j.indcrop.2019.04.003 (2019).

  6. Zhang, B., Zhang, Y., Li, H., Deng, Z. & Tsao, R. A review on insoluble-bound phenolics in plant-based food matrix and their contribution to human health with future perspectives, Trends Food Sci. Technol., vol. 105, pp. 347–362, Nov. (2020). https://doi.org/10.1016/j.tifs.2020.09.029

  7. Arshad, A. et al. Dec., In vitro enzyme inhibition, antibacterial, UHPLC-MS chemical profiling and in silico studies of Indigofera argentea Burm. f. for potential biopharmaceutical application, South Afr. J. Bot., 143, 322–329 https://doi.org/10.1016/J.SAJB.2020.12.001 (2021).

  8. Bezerra, J. N. et al. Chemical composition, evaluation of antiparasitary and cytotoxic activity of the essential oil of psidium brownianum MART EX. DC. Biocatal. Agric. Biotechnol. 39, 102247. https://doi.org/10.1016/J.BCAB.2021.102247 (2022).

  9. Kouadri, I. & Satha, H. Extraction and characterization of cellulose and cellulose nanofibers from Citrullus colocynthis seeds, Ind. Crops Prod. 124, 787–796 https://doi.org/10.1016/J.INDCROP.2018.08.051 (2018).

  10. Rumpf, J., Burger, R. & Schulze, M. Statistical evaluation of DPPH, ABTS, FRAP, and Folin-Ciocalteu assays to assess the antioxidant capacity of lignins. Int. J. Biol. Macromol. 233 https://doi.org/10.1016/j.ijbiomac.2023.123470 (2023).

  11. Oragwu, I. P. & SOLVENT-EXTRACTED WATERMELON SEED OIL. (Citrulus Vulgaris) AND APPLICATION IN SKIN-CARE PRODUCTS. COOU J. Phys. Ciences, 3, 1, (2020).

  12. Sharma, V. et al. Sequential ultrasound assisted deep eutectic solvent-based protein extraction from Sacha Inchi meal biomass: towards circular bioeconomy. J. Food Sci. Technol. 60 (4). https://doi.org/10.1007/s13197-023-05689-0 (2023).

  13. Okene, E. O. & Evbuomwan, B. O. Solvent extraction and characterization of oil from coconut seed using alternative solvents. Int. J. Eng. Tech. Res. (IJETR), 2, 12, (2014).

  14. Sultana, B., Anwar, F. & Ashraf, M. Effect of extraction solvent/technique on the antioxidant activity of selected medicinal plant extracts. Molecules 14 (6). https://doi.org/10.3390/molecules14062167 (2009).

  15. Ishak, I., Ghani, M. A. & Yuen, J. Z. Effects of extraction solvent and time on the oil yield, total phenolic content, carotenoid and antioxidant activity of Australian Chia seed (Salvia Hispanica L.) oil. Food Res. 4 https://doi.org/10.26656/fr.2017.4(S4).006 (2020).

  16. Chouaibi, M., Rigane, K. & Ferrari, G. Extraction of Citrullus colocynthis L. seed oil by supercritical carbon dioxide process using response surface methodology (RSM) and artificial neural network (ANN) approaches. Ind. Crops Prod. 158 https://doi.org/10.1016/j.indcrop.2020.113002 (2020).

  17. Shetty, K. & McCue, P. Phenolic antioxidant biosynthesis in plants for functional food application: integration of systems biology and biotechnological approaches, (2003). https://doi.org/10.1081/FBT-120023073

  18. Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods, (2020). https://doi.org/10.1111/jfbc.13394

  19. Bullo, T. A. Extraction and characterization of oil from avocado peels. International J. Chem. Mol. Engineering, 15, 2, (2021).

  20. Yu, X. et al. Royal jelly fatty acids: chemical Composition, Extraction, biological Activity, and prospect. J. Funct. Foods. 111, 105868. https://doi.org/10.1016/J.JFF.2023.105868 (Dec. 2023).

  21. Karrar, E. et al. Docosahexaenoic acid and eicosapentaenoic acid from microalgae: Extraction, purification, separation, and analytical methods, (2024). https://doi.org/10.1016/j.algal.2023.103365

  22. Reungoat, V., Chadni, M. & Ioannou, I. Response surface methodology applied to the optimization of phenolic compound extraction from brassica. Response Surf. Methodol. Eng. Sci. https://doi.org/10.5772/intechopen.97655 (2021).

    Google Scholar 

  23. Fadjare Frempong, T., Owusu Boadi, N. & Badu, M. Optimization of extraction conditions for polyphenols from the stem bark of funtumia elastica (Funtum) utilizing response surface methodology. AAS Open. Res. 4 https://doi.org/10.12688/aasopenres.13284.2 (2021).

  24. Prasad, K. N., Kong, K. W., Ramanan, R. N., Azlan, A. & Ismail, A. Selection of experimental domain using Two-Level factorial design to determine extract Yield, antioxidant Capacity, Phenolics, and flavonoids from mangifera Pajang Kosterm. Sep. Sci. Technol. (Philadelphia). 47 (16). https://doi.org/10.1080/01496395.2012.672511 (2012).

  25. Ahmed, M. et al. Phytochemical screening, total phenolic and flavonoids contents and antioxidant activities of Citrullus colocynthis L. and Cannabis Sativa L., Appl. Ecol. Environ. Res., vol. 17, no. 3, (2019). https://doi.org/10.15666/aeer/1703_69616979

  26. Chen, G. L., Zhang, X., Chen, S. G., Han, M. D. & Gao, Y. Q. Antioxidant activities and contents of free, esterified and insoluble-bound phenolics in 14 subtropical fruit leaves collected from the south of China, J. Funct. Foods, vol. 30, pp. 290–302, Mar. (2017). https://doi.org/10.1016/J.JFF.2017.01.011

  27. Hinkelmann, K. Design and Analysis of Experiments, vol. 3. (2012). https://doi.org/10.1002/9781118147634

  28. Box, G. E. P. & Wilson, K. B. On the Experimental Attainment of Optimum Conditions, J R Stat Soc Series B Stat Methodol, 13 (1), (1951). https://doi.org/10.1111/j.2517-6161. 1951.tb00067. x.

  29. Harrington, E. C., Pay, A., Hall, C., Mccall, T. & Mccall, T. The desirability function. Industrial Qual. Control, 21, 10, (1965).

  30. De Santana, L. B., Rodrigues, V. F. & de Sampaio, N. A. Simultaneous optimization response surface experiments with several response variables. Revista De Gestão E Secretariado (Management Administrative Prof. Review). 14 (6). https://doi.org/10.7769/gesec.v14i6.2310 (2023).

  31. Cardoso, R. P., da Reis, J. S., Silva, D. E. W., De Barros, J. G. M. & de Sampaio, N. A. How to perform a simultaneous optimization with several response variables. Revista De Gestão E Secretariado. 14 (1). https://doi.org/10.7769/gesec.v14i1.1536 (2023).

  32. Derringer, G. & Suich, R. Simultaneous optimization of several response variables. J. Qual. Technol. 12 (4). https://doi.org/10.1080/00224065.1980.11980968 (1980).

  33. Yuxuan, G. et al. Optimization of Ethanol-Based extraction process for Duliang formula by central composite design and response surface methodology. Nat. Prod. Commun. 17 (12). https://doi.org/10.1177/1934578X221142719 (2022).

  34. Jiménez-Moreno, N., Volpe, F., Moler, J. A., Esparza, I. & Ancín-Azpilicueta, C. Impact of extraction conditions on the phenolic composition and antioxidant capacity of grape stem extracts. Antioxidants 8 (12). https://doi.org/10.3390/antiox8120597 (2019).

  35. Benzie, I. F. F. & Strain, J. J. The ferric reducing ability of plasma (FRAP) as a measure of ‘antioxidant power’: the FRAP assay. Anal. Biochem. 239 (1). https://doi.org/10.1006/abio.1996.0292 (1996).

  36. Elboughdiri, N. Effect of Time, Solvent-Solid Ratio, ethanol concentration and temperature on extraction yield of phenolic compounds from Olive leaves. Eng. Technol. Appl. Sci. Res. 8 (2). https://doi.org/10.48084/etasr.1983 (2018).

  37. Mbah, G. O., Amulu, N. F. & Onyiah, M. I. Effects of process parameters on the yield of oil from melon seed (Colocynthis citrullus). Pac. J. Sci. Technology, 43, 2, (2014).

  38. Mukesh Kr et al. Effects of repeated deep frying on refractive index and peroxide value of selected vegetable oils. Int. J. Res. Appl. Sci. Biotechnol. 9 (3). https://doi.org/10.31033/ijrasb.9.3.6 (2022).

  39. Da Silva, D. C. C. & Pietrobelli, J. M. T. D. A. Residual biomass of Chia seeds (Salvia hispanica) oil extraction as low cost and eco-friendly biosorbent for effective reactive yellow B2R textile dye removal: Characterization, kinetic, thermodynamic and isotherm studies. J. Environ. Chem. Eng. 7 (2). https://doi.org/10.1016/j.jece.2019.103008 (2019).

  40. Haile, M., Duguma, H. T., Chameno, G. & Kuyu, C. G. Effects of location and extraction solvent on physico chemical properties of Moringa stenopetala seed oil. Heliyon 5 (11), e02781 (2019).

  41. Best, I., Cartagena-Gonzales, Z., Arana-Copa, O., Olivera-Montenegro, L. & Zabot, G. Production of oil and Phenolic-Rich extracts from mauritia flexuosa L.f. Using sequential supercritical and conventional solvent extraction: experimental and economic Evaluation†. Processes 10 (3). https://doi.org/10.3390/pr10030459 (2022).

  42. Yusuff, A. S. Extraction, optimization, and characterization of oil from green microalgae chlorophyta species. Energy Sources Part. A: Recovery Utilization Environ. Eff. 45 (3). https://doi.org/10.1080/15567036.2019.1676327 (2023).

  43. Joven, J. M. O. et al. Optimized ultrasonic-assisted oil extraction and biodiesel production from the seeds of maesopsis eminii. Ind. Crops Prod. 155 https://doi.org/10.1016/j.indcrop.2020.112772 (2020).

  44. Gumaling, R. P. et al. Optimized bio-oil yield from Swietenia macrophylla seeds via ultrasonic cavitation through response surface methodology. Energy Ecol. Environ. 3 (5). https://doi.org/10.1007/s40974-018-0098-7 (2018).

  45. Matei, P. L. et al. Ultrasound-Assisted extraction of blackberry seed oil: optimization and oil characterization. Molecules 28 (6). https://doi.org/10.3390/molecules28062486 (2023).

  46. Chavan, S. B., Kumbhar, R. R. & Sharma, Y. C. Transesterification of Citrullus colocynthis (Thumba) oil: optimization for biodiesel production. Adv. Appl. Sci. Research, 5, 3, (2014).

  47. Fadjare Frempong, T., Owusu Boadi, N. & Badu, M. Optimization of extraction conditions for polyphenols from the stem bark of funtumia elastica (Funtum) utilizing response surface methodology. AAS Open. Res. 4 https://doi.org/10.12688/aasopenres13284.1 (2021).

  48. Thamer, F. H. et al. Antioxidant Capacity, total phenol contents and phytochemical screening of Citrullus colocynthis Crust, pulp and seeds extracts. Am. J. Biochem. Biotechnol. 19 (1). https://doi.org/10.3844/ajbbsp2023.12.19 (2023).

  49. Chouaibi, M., Rigane, K. & Ferrari, G. Extraction of Citrullus colocynthis L. seed oil by supercritical carbon dioxide process using response surface methodology (RSM) and artificial neural network (ANN) approaches. Ind. Crops Prod. 158, 113002. https://doi.org/10.1016/J.INDCROP.2020.113002 (2020).

  50. Ben Mansour, R. et al. The use of response surface methodology to optimize assisted extraction of bioactive compounds from Cucurbita maxima fruit By-Products. Processes 11 (6). https://doi.org/10.3390/pr11061726 (2023).

  51. Kamal, N. A. S. S. et al. Response surface methodology for optimization of citrullus lanatus rind extraction Conditions, phytochemical screening and its antioxidant activities. Trends Sci. 20, 10. (2023).

  52. Karami, Z. et al. Optimization of microwave-assisted extraction (MAE) and Soxhlet extraction of phenolic compounds from licorice root. J. Food Sci. Technol. 52 (6). https://doi.org/10.1007/s13197-014-1384-9 (2015).

  53. Zulkifli, S. A., Gani, S. S. A., Zaidan, U. H. & Halmi, M. I. E. Optimization of total phenolic and flavonoid contents of defatted Pitaya (Hylocereus polyrhizus) seed extract and its antioxidant properties. Molecules 25 (4). https://doi.org/10.3390/molecules25040787 (2020).

  54. Salah Eldeen Hassan, A. M., Rashed, M. M., Mahmoud, M. A. & RADWAN, E. M. M. Biochemical and toxicological effects of Citrullus colocynthis (L.) seed oil (extracted by three different methods) on the Potato tuber moth, Phthorimaea operculella (Zeller)., Egypt. Pharmac. J. (2025). https://doi.org/10.21608/epj.2025.396378.1131

  55. Khan, M. et al. Diversity of Citrullus colocynthis (L.) Schrad seeds extracts: detailed chemical profiling and evaluation of their medicinal properties. Plants 12 (3), 567. https://doi.org/10.3390/plants12030567 (2023).

  56. Rezagholizade-shirvan, A., Shokri, S., Dadpour, S. M. & Amiryousefi, M. R. Evaluation of physicochemical, antioxidant, antibacterial activity, and sensory properties of watermelon rind candy, Heliyon 9 (6), (2023). https://doi.org/10.1016/j.heliyon.2023.e17300

Download references