Optimized gradient of lyophilized platelet-rich plasma in biomimetic 3D-printed triphasic scaffold based on alginate and gelatin for osteochondral tissue engineering

optimized-gradient-of-lyophilized-platelet-rich-plasma-in-biomimetic-3d-printed-triphasic-scaffold-based-on-alginate-and-gelatin-for-osteochondral-tissue-engineering
Optimized gradient of lyophilized platelet-rich plasma in biomimetic 3D-printed triphasic scaffold based on alginate and gelatin for osteochondral tissue engineering

References

  1. Ansari, S., Khorshidi, S. & Karkhaneh, A. Engineering of gradient osteochondral tissue: from nature to lab. Acta Biomater. 87, 41–54 (2019).

    Google Scholar 

  2. Liu, J. et al. 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Mater. Des. 171, 107708 (2019).

    Google Scholar 

  3. Shaygani, H. et al. Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering. Int J. Biol. Macromol 282, (2024).

  4. Zhang, B. et al. 3D bioprinting: an emerging technology full of opportunities and challenges. Biodes Manuf. 1, 2–13 (2018).

    Google Scholar 

  5. Jia, S. et al. Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Appl. Mater. Interfaces. 10, 20296–20305 (2018).

    Google Scholar 

  6. Yousefi, A. M., Hoque, M. E., Prasad, R. G. S. V. & Uth, N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J. Biomed. Mater. Res. A. 103, 2460–2481 (2015).

    Google Scholar 

  7. Mallakpour, S., Azadi, E. & Hussain, C. M. State-of-the-art of 3D printing technology of alginate-based hydrogels-An emerging technique for industrial applications. Adv Colloid Interface Sci 293, (2021).

  8. Wu, T. et al. Extracellular matrix (ECM)-inspired high-strength gelatin-alginate based hydrogels for bone repair. Biomater. Sci. 11, 2877–2885 (2023).

    Google Scholar 

  9. Yao, R., Zhang, R., Luan, J. & Lin, F. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. Biofabrication 4, (2012).

  10. Olate-Moya, F. et al. Chondroinductive Alginate-Based hydrogels having graphene oxide for 3D printed scaffold fabrication. ACS Appl. Mater. Interfaces. 12, 4343–4357 (2020).

    Google Scholar 

  11. Purohit, S. D. et al. Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int. J. Biol. Macromol. 133, 592–602 (2019).

    Google Scholar 

  12. Okuda, K. et al. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J. Periodontol. 74, 849–857 (2003).

    Google Scholar 

  13. Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M. & Yoo J. U. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell. Res. 238, 265–272 (1998).

    Google Scholar 

  14. Andia, I., Perez-valle, A., Amo, C., Del & Maffulli, N. Freeze-Drying of Platelet-Rich plasma: the quest for standardization. Int. J. Mol. Sci. 21, 1–20 (2020).

    Google Scholar 

  15. Mollajavadi, M. Y., Saadatmand, M. & Ghobadi, F. Effect of calcium peroxide particles as oxygen-releasing materials on cell growth and mechanical properties of scaffolds for tissue engineering. Iran. Polym. J. (English Edition). 32, 599–608 (2023).

    Google Scholar 

  16. Ansarizadeh, M., Mashayekhan, S. & Saadatmand, M. Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane. Int. J. Biol. Macromol. 125, 383–391 (2019).

    Google Scholar 

  17. Alasvand, N. et al. Copper / cobalt doped strontium-bioactive glasses for bone tissue engineering applications. Open. Ceram. 14, 100358 (2023).

    Google Scholar 

  18. Ouyang, L., Yao, R., Zhao, Y. & Sun, W. Effect of Bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8, (2016).

  19. Ghobadi, F., Saadatmand, M., Simorgh, S. & Brouki Milan, P. Microfluidic 3D cell culture: potential application of collagen hydrogels with an optimal dose of bioactive glasses. Sci. Rep. 15(1), 1–17 (2025).

    Google Scholar 

  20. Kilian, D. et al. 3D Bioprinting of osteochondral tissue substitutes – in vitro-chondrogenesis in multi-layered mineralized constructs. Sci. Rep. 10, 1–17 (2020).

    Google Scholar 

  21. Lotfi, E., Kholghi, A., Golab, F., Mohammadi, A. & Barati, M. Circulating MiRNAs and LncRNAs serve as biomarkers for early colorectal cancer diagnosis. Pathol Res. Pract 255, (2024).

  22. Zhou, X. et al. 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon N Y. 116, 615–624 (2017).

    Google Scholar 

  23. Somasekharan, L. T., Kasoju, N., Raju, R. & Bhatt, A. Formulation and characterization of alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting applications. Bioeng. (Basel). 7, 1–12 (2020).

    Google Scholar 

  24. Zhang, J., Eyisoylu, H., Qin, X. H., Rubert, M. & Müller, R. 3D Bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater. 121, 637–652 (2021).

    Google Scholar 

  25. Hu, X. et al. 3D Bio-Printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds. Polymers (Basel) 11, (2019).

  26. Choe, G., Oh, S., Seok, J. M., Park, S. A. & Lee, J. Y. Graphene oxide/alginate composites as novel Bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Nanoscale 11, 23275–23285 (2019).

    Google Scholar 

  27. Lee, S. S., Du, X., Kim, I. & Ferguson, S. J. Scaffolds for bone-tissue engineering. Matter 5, 2722–2759 (2022).

    Google Scholar 

  28. Sinha, S., Astani, A., Ghosh, T., Schnitzler, P. & Ray, B. Polysaccharides from sargassum tenerrimum: structural features, chemical modification and anti-viral activity. Phytochemistry 71, 235–242 (2010).

    Google Scholar 

  29. Kim, J. et al. A Gelatin/Alginate double network hydrogel nerve guidance conduit fabricated by a Chemical-Free gamma radiation for peripheral nerve regeneration. Adv. Healthc. Mater. 13, 2400142 (2024).

    Google Scholar 

  30. Jiao, C. et al. Efficient removal of dyes from aqueous solution by a porous sodium Alginate/gelatin/graphene oxide Triple-network composite aerogel. J. Polym. Environ. 28, 1492–1502 (2020).

    Google Scholar 

  31. Costa, M. C. F. et al. Accelerated synthesis of graphene oxide from graphene. Nanomaterials 2021. 11, Page 551 (11), 551 (2021).

    Google Scholar 

  32. Khoshnood, N. & Zamanian, A. Development of novel alginate-polyethyleneimine cell-laden Bioink designed for 3D Bioprinting of cutaneous wound healing scaffolds. J Appl. Polym. Sci 139, (2022).

  33. Sharma, C., Dinda, A. K., Potdar, P. D., Chou, C. F. & Mishra, N. C. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Mater. Sci. Engineering: C. 64, 416–427 (2016).

    Google Scholar 

  34. Kumar, A., Nune, K. C. & Misra, R. D. K. Design and biological functionality of a novel hybrid Ti-6Al-4V/hydrogel system for reconstruction of bone defects. J. Tissue Eng. Regen Med. 12, 1133–1144 (2018).

    Google Scholar 

  35. Kenry, Lee, W. C., Loh, K. P. & Lim, C. T. When stem cells Meet graphene: opportunities and challenges in regenerative medicine. Biomaterials 155, 236–250 (2018).

    Google Scholar 

  36. Ramani, D. & Sastry, T. P. Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: A potential osteoinductive composite. Cellulose 21, 3585–3595 (2014).

    Google Scholar 

  37. Purohit, S. D. et al. Fabrication of graphene oxide and nanohydroxyapatite reinforced Gelatin–Alginate nanocomposite scaffold for bone tissue regeneration. Front. Mater. 7, 511489 (2020).

    Google Scholar 

  38. Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).

    Google Scholar 

  39. Jain, E. et al. Platelet-Rich plasma released from polyethylene glycol hydrogels exerts beneficial effects on human chondrocytes. J. Orthop. Res. 37, 2401–2410 (2019).

    Google Scholar 

  40. Zhang, J. et al. An injectable bioactive dressing based on platelet-rich plasma and nanoclay: sustained release of deferoxamine to accelerate chronic wound healing. Acta Pharm. Sin B. 13, 4318–4336 (2023).

    Google Scholar 

  41. Chen, D. et al. MSCs-laden silk Fibroin/GelMA hydrogels with incorporation of platelet-rich plasma for chondrogenic construct. Heliyon 9, e14349 (2023).

    Google Scholar 

  42. Singh, Y. P., Moses, J. C., Bandyopadhyay, A. & Mandal, B. B. 3D bioprinted Silk-Based in vitro osteochondral model for osteoarthritis therapeutics. Adv. Healthc. Mater. 11, 2200209 (2022).

    Google Scholar 

  43. Zhao, M. et al. Functionalizing multi-component Bioink with platelet-rich plasma for customized in-situ bilayer Bioprinting for wound healing. Mater. Today Bio. 16, 100334 (2022).

    Google Scholar 

  44. Sarker, B. et al. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J. Mater. Chem. B. 2, 1470–1482 (2014).

    Google Scholar 

  45. Li, Z. et al. Addition of platelet-rich plasma to silk fibroin hydrogel bioprinting for cartilage regeneration. Tissue Eng. Part A  26, 886–895 (2020).

    Google Scholar 

  46. Wu, D., Spanou, A., Diez-Escudero, A. & Persson, C. 3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling. J. Mech. Behav. Biomed. Mater. 103, 103608 (2020).

    Google Scholar 

  47. Tang, S., Wang, L., Zhang, Y. & Zhang, F. A. Biomimetic Platelet-Rich Plasma-Based interpenetrating network printable hydrogel for bone regeneration. Front Bioeng. Biotechnol 10, (2022).

  48. KhaliliJafarabad, N., Behnamghader, A., Khorasani, M. T. & Mozafari, M. Platelet-rich plasma-hyaluronic acid/chondrotin sulfate/carboxymethyl Chitosan hydrogel for cartilage regeneration. Biotechnol. Appl. Biochem. 69, 534–547 (2022).

    Google Scholar 

  49. Singh, B. N. et al. Generation of hybrid tissue engineered construct through embedding autologous chondrocyte loaded platelet rich plasma/alginate based hydrogel in porous scaffold for cartilage regeneration. Int. J. Biol. Macromol. 203, 389–405 (2022).

    Google Scholar 

  50. Fukaya, Y. et al. Platelet-rich plasma inhibits the apoptosis of highly adipogenic homogeneous preadipocytes in an in vitro culture system. Exp. Mol. Med. 44, 330 (2012).

    Google Scholar 

  51. Gao, X. et al. Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. J. Biomed. Mater. Res. A. 107, 2076–2087 (2019).

    Google Scholar 

  52. Choi, B. H. et al. Effect of platelet-rich plasma (PRP) concentration on the viability and proliferation of alveolar bone cells: an in vitro study. Int. J. Oral Maxillofac. Surg. 34, 420–424 (2005).

    Google Scholar 

  53. Tavassoli-Hojjati, S., Sattari, M., Ghasemi, T., Ahmadi, R. & Mashayekhi, A. Effect of platelet-rich plasma concentrations on the proliferation of periodontal cells: an in vitro study. Eur. J. Dent. 10, 469–474 (2016).

    Google Scholar 

  54. Fukui, M. et al. Activation of cell adhesion and migration is an early event of platelet-rich plasma (PRP)-dependent stimulation of human adipose-derived stem/stromal cells. Hum. Cell. 37, 181–192 (2024).

    Google Scholar 

  55. Barlian, A., Judawisastra, H., Alfarafisa, N. M., Wibowo, U. A. & Rosadi, I. Chondrogenic differentiation of adipose-derived mesenchymal stem cells induced by L-ascorbic acid and platelet rich plasma on silk fibroin scaffold. PeerJ 6, (2018).

  56. Elder, S. & Thomason, J. Effect of Platelet-Rich plasma on chondrogenic differentiation in Three-Dimensional culture. Open. Orthop. J. 8, 78 (2014).

    Google Scholar 

  57. Kazem-Arki, M. et al. Enhancement of osteogenic differentiation of adipose-derived stem cells by PRP modified nanofibrous scaffold. Cytotechnology 70, 1487–1498 (2018).

    Google Scholar 

Download references