References
-
Ansari, S., Khorshidi, S. & Karkhaneh, A. Engineering of gradient osteochondral tissue: from nature to lab. Acta Biomater. 87, 41–54 (2019).
-
Liu, J. et al. 3D printing of biomimetic multi-layered GelMA/nHA scaffold for osteochondral defect repair. Mater. Des. 171, 107708 (2019).
-
Shaygani, H. et al. Cartilage and bone injectable hydrogels: A review of injectability methods and treatment strategies for repair in tissue engineering. Int J. Biol. Macromol 282, (2024).
-
Zhang, B. et al. 3D bioprinting: an emerging technology full of opportunities and challenges. Biodes Manuf. 1, 2–13 (2018).
-
Jia, S. et al. Multilayered scaffold with a compact interfacial layer enhances osteochondral defect repair. ACS Appl. Mater. Interfaces. 10, 20296–20305 (2018).
-
Yousefi, A. M., Hoque, M. E., Prasad, R. G. S. V. & Uth, N. Current strategies in multiphasic scaffold design for osteochondral tissue engineering: A review. J. Biomed. Mater. Res. A. 103, 2460–2481 (2015).
-
Mallakpour, S., Azadi, E. & Hussain, C. M. State-of-the-art of 3D printing technology of alginate-based hydrogels-An emerging technique for industrial applications. Adv Colloid Interface Sci 293, (2021).
-
Wu, T. et al. Extracellular matrix (ECM)-inspired high-strength gelatin-alginate based hydrogels for bone repair. Biomater. Sci. 11, 2877–2885 (2023).
-
Yao, R., Zhang, R., Luan, J. & Lin, F. Alginate and alginate/gelatin microspheres for human adipose-derived stem cell encapsulation and differentiation. Biofabrication 4, (2012).
-
Olate-Moya, F. et al. Chondroinductive Alginate-Based hydrogels having graphene oxide for 3D printed scaffold fabrication. ACS Appl. Mater. Interfaces. 12, 4343–4357 (2020).
-
Purohit, S. D. et al. Development of a nanocomposite scaffold of gelatin–alginate–graphene oxide for bone tissue engineering. Int. J. Biol. Macromol. 133, 592–602 (2019).
-
Okuda, K. et al. Platelet-rich plasma contains high levels of platelet-derived growth factor and transforming growth factor-beta and modulates the proliferation of periodontally related cells in vitro. J. Periodontol. 74, 849–857 (2003).
-
Johnstone, B., Hering, T. M., Caplan, A. I., Goldberg, V. M. & Yoo J. U. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell. Res. 238, 265–272 (1998).
-
Andia, I., Perez-valle, A., Amo, C., Del & Maffulli, N. Freeze-Drying of Platelet-Rich plasma: the quest for standardization. Int. J. Mol. Sci. 21, 1–20 (2020).
-
Mollajavadi, M. Y., Saadatmand, M. & Ghobadi, F. Effect of calcium peroxide particles as oxygen-releasing materials on cell growth and mechanical properties of scaffolds for tissue engineering. Iran. Polym. J. (English Edition). 32, 599–608 (2023).
-
Ansarizadeh, M., Mashayekhan, S. & Saadatmand, M. Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane. Int. J. Biol. Macromol. 125, 383–391 (2019).
-
Alasvand, N. et al. Copper / cobalt doped strontium-bioactive glasses for bone tissue engineering applications. Open. Ceram. 14, 100358 (2023).
-
Ouyang, L., Yao, R., Zhao, Y. & Sun, W. Effect of Bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Biofabrication 8, (2016).
-
Ghobadi, F., Saadatmand, M., Simorgh, S. & Brouki Milan, P. Microfluidic 3D cell culture: potential application of collagen hydrogels with an optimal dose of bioactive glasses. Sci. Rep. 15(1), 1–17 (2025).
-
Kilian, D. et al. 3D Bioprinting of osteochondral tissue substitutes – in vitro-chondrogenesis in multi-layered mineralized constructs. Sci. Rep. 10, 1–17 (2020).
-
Lotfi, E., Kholghi, A., Golab, F., Mohammadi, A. & Barati, M. Circulating MiRNAs and LncRNAs serve as biomarkers for early colorectal cancer diagnosis. Pathol Res. Pract 255, (2024).
-
Zhou, X. et al. 3D bioprinted graphene oxide-incorporated matrix for promoting chondrogenic differentiation of human bone marrow mesenchymal stem cells. Carbon N Y. 116, 615–624 (2017).
-
Somasekharan, L. T., Kasoju, N., Raju, R. & Bhatt, A. Formulation and characterization of alginate Dialdehyde, Gelatin, and Platelet-Rich Plasma-Based Bioink for Bioprinting applications. Bioeng. (Basel). 7, 1–12 (2020).
-
Zhang, J., Eyisoylu, H., Qin, X. H., Rubert, M. & Müller, R. 3D Bioprinting of graphene oxide-incorporated cell-laden bone mimicking scaffolds for promoting scaffold fidelity, osteogenic differentiation and mineralization. Acta Biomater. 121, 637–652 (2021).
-
Hu, X. et al. 3D Bio-Printing of CS/Gel/HA/Gr hybrid osteochondral scaffolds. Polymers (Basel) 11, (2019).
-
Choe, G., Oh, S., Seok, J. M., Park, S. A. & Lee, J. Y. Graphene oxide/alginate composites as novel Bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications. Nanoscale 11, 23275–23285 (2019).
-
Lee, S. S., Du, X., Kim, I. & Ferguson, S. J. Scaffolds for bone-tissue engineering. Matter 5, 2722–2759 (2022).
-
Sinha, S., Astani, A., Ghosh, T., Schnitzler, P. & Ray, B. Polysaccharides from sargassum tenerrimum: structural features, chemical modification and anti-viral activity. Phytochemistry 71, 235–242 (2010).
-
Kim, J. et al. A Gelatin/Alginate double network hydrogel nerve guidance conduit fabricated by a Chemical-Free gamma radiation for peripheral nerve regeneration. Adv. Healthc. Mater. 13, 2400142 (2024).
-
Jiao, C. et al. Efficient removal of dyes from aqueous solution by a porous sodium Alginate/gelatin/graphene oxide Triple-network composite aerogel. J. Polym. Environ. 28, 1492–1502 (2020).
-
Costa, M. C. F. et al. Accelerated synthesis of graphene oxide from graphene. Nanomaterials 2021. 11, Page 551 (11), 551 (2021).
-
Khoshnood, N. & Zamanian, A. Development of novel alginate-polyethyleneimine cell-laden Bioink designed for 3D Bioprinting of cutaneous wound healing scaffolds. J Appl. Polym. Sci 139, (2022).
-
Sharma, C., Dinda, A. K., Potdar, P. D., Chou, C. F. & Mishra, N. C. Fabrication and characterization of novel nano-biocomposite scaffold of chitosan–gelatin–alginate–hydroxyapatite for bone tissue engineering. Mater. Sci. Engineering: C. 64, 416–427 (2016).
-
Kumar, A., Nune, K. C. & Misra, R. D. K. Design and biological functionality of a novel hybrid Ti-6Al-4V/hydrogel system for reconstruction of bone defects. J. Tissue Eng. Regen Med. 12, 1133–1144 (2018).
-
Kenry, Lee, W. C., Loh, K. P. & Lim, C. T. When stem cells Meet graphene: opportunities and challenges in regenerative medicine. Biomaterials 155, 236–250 (2018).
-
Ramani, D. & Sastry, T. P. Bacterial cellulose-reinforced hydroxyapatite functionalized graphene oxide: A potential osteoinductive composite. Cellulose 21, 3585–3595 (2014).
-
Purohit, S. D. et al. Fabrication of graphene oxide and nanohydroxyapatite reinforced Gelatin–Alginate nanocomposite scaffold for bone tissue regeneration. Front. Mater. 7, 511489 (2020).
-
Zhu, Y. et al. Graphene and graphene oxide: synthesis, properties, and applications. Adv. Mater. 22, 3906–3924 (2010).
-
Jain, E. et al. Platelet-Rich plasma released from polyethylene glycol hydrogels exerts beneficial effects on human chondrocytes. J. Orthop. Res. 37, 2401–2410 (2019).
-
Zhang, J. et al. An injectable bioactive dressing based on platelet-rich plasma and nanoclay: sustained release of deferoxamine to accelerate chronic wound healing. Acta Pharm. Sin B. 13, 4318–4336 (2023).
-
Chen, D. et al. MSCs-laden silk Fibroin/GelMA hydrogels with incorporation of platelet-rich plasma for chondrogenic construct. Heliyon 9, e14349 (2023).
-
Singh, Y. P., Moses, J. C., Bandyopadhyay, A. & Mandal, B. B. 3D bioprinted Silk-Based in vitro osteochondral model for osteoarthritis therapeutics. Adv. Healthc. Mater. 11, 2200209 (2022).
-
Zhao, M. et al. Functionalizing multi-component Bioink with platelet-rich plasma for customized in-situ bilayer Bioprinting for wound healing. Mater. Today Bio. 16, 100334 (2022).
-
Sarker, B. et al. Fabrication of alginate–gelatin crosslinked hydrogel microcapsules and evaluation of the microstructure and physico-chemical properties. J. Mater. Chem. B. 2, 1470–1482 (2014).
-
Li, Z. et al. Addition of platelet-rich plasma to silk fibroin hydrogel bioprinting for cartilage regeneration. Tissue Eng. Part A 26, 886–895 (2020).
-
Wu, D., Spanou, A., Diez-Escudero, A. & Persson, C. 3D-printed PLA/HA composite structures as synthetic trabecular bone: A feasibility study using fused deposition modeling. J. Mech. Behav. Biomed. Mater. 103, 103608 (2020).
-
Tang, S., Wang, L., Zhang, Y. & Zhang, F. A. Biomimetic Platelet-Rich Plasma-Based interpenetrating network printable hydrogel for bone regeneration. Front Bioeng. Biotechnol 10, (2022).
-
KhaliliJafarabad, N., Behnamghader, A., Khorasani, M. T. & Mozafari, M. Platelet-rich plasma-hyaluronic acid/chondrotin sulfate/carboxymethyl Chitosan hydrogel for cartilage regeneration. Biotechnol. Appl. Biochem. 69, 534–547 (2022).
-
Singh, B. N. et al. Generation of hybrid tissue engineered construct through embedding autologous chondrocyte loaded platelet rich plasma/alginate based hydrogel in porous scaffold for cartilage regeneration. Int. J. Biol. Macromol. 203, 389–405 (2022).
-
Fukaya, Y. et al. Platelet-rich plasma inhibits the apoptosis of highly adipogenic homogeneous preadipocytes in an in vitro culture system. Exp. Mol. Med. 44, 330 (2012).
-
Gao, X. et al. Fabrication and properties of an injectable sodium alginate/PRP composite hydrogel as a potential cell carrier for cartilage repair. J. Biomed. Mater. Res. A. 107, 2076–2087 (2019).
-
Choi, B. H. et al. Effect of platelet-rich plasma (PRP) concentration on the viability and proliferation of alveolar bone cells: an in vitro study. Int. J. Oral Maxillofac. Surg. 34, 420–424 (2005).
-
Tavassoli-Hojjati, S., Sattari, M., Ghasemi, T., Ahmadi, R. & Mashayekhi, A. Effect of platelet-rich plasma concentrations on the proliferation of periodontal cells: an in vitro study. Eur. J. Dent. 10, 469–474 (2016).
-
Fukui, M. et al. Activation of cell adhesion and migration is an early event of platelet-rich plasma (PRP)-dependent stimulation of human adipose-derived stem/stromal cells. Hum. Cell. 37, 181–192 (2024).
-
Barlian, A., Judawisastra, H., Alfarafisa, N. M., Wibowo, U. A. & Rosadi, I. Chondrogenic differentiation of adipose-derived mesenchymal stem cells induced by L-ascorbic acid and platelet rich plasma on silk fibroin scaffold. PeerJ 6, (2018).
-
Elder, S. & Thomason, J. Effect of Platelet-Rich plasma on chondrogenic differentiation in Three-Dimensional culture. Open. Orthop. J. 8, 78 (2014).
-
Kazem-Arki, M. et al. Enhancement of osteogenic differentiation of adipose-derived stem cells by PRP modified nanofibrous scaffold. Cytotechnology 70, 1487–1498 (2018).
