Optimizing brown rice liquefaction and saccharification using response surface methodology for grain ethanol production

optimizing-brown-rice-liquefaction-and-saccharification-using-response-surface-methodology-for-grain-ethanol-production
Optimizing brown rice liquefaction and saccharification using response surface methodology for grain ethanol production

References

  1. Jaswal, D., Bhushan, K., Kocher, G. S. & Singh, A. Optimization of pretreatment of potato waste for release of fermentable sugars for vodka production: Response surface methodology approach. Biomass Convers. Biorefin. 15, 27593–27605 (2024).

    Google Scholar 

  2. Jeon, H. J., Yu, J. C., Kim, G. W. & Kong, H. S. Quality characteristics of Takju by yeast strain type. Korean J. Food Nutr. 27, 971–978 (2014).

    Google Scholar 

  3. Baek, C. H. et al. Quality characteristics of brown rice makgeolli produced under differing conditions. Korean J. Microbiol. Biotechnol. 41, 168–175 (2013).

    Google Scholar 

  4. Lee, S. W. et al. Quality characteristics of brown rice vinegar by different yeasts and fermentation condition. J. Korean Soc. Food Sci. Nutr. 39, 1366–1372 (2010).

    Google Scholar 

  5. Pino, A. et al. Formulation of germinated brown rice fermented products functionalized by probiotics. Innov. Food Sci. Emerg. Technol. 80, 103076 (2022).

    Google Scholar 

  6. Woo, S. M. et al. Effect of α-amylase treatment of brown rice (Goami) alcohol fermentation by-product. Food Sci. Preserv. 14, 617–623 (2007).

    Google Scholar 

  7. Spinosa, W. A., Santos Júnior, V. D., Galvan, D., Fiorio, J. L. & Gomez, R. J. H. C. Syrup production via enzymatic conversion of a byproduct (broken rice) from rice industry. Acta Sci. Technol. 38, 13–22 (2016).

    Google Scholar 

  8. Espinosa-Ramírez, J., Pérez-Carrillo, E. & Serna-Saldívar, S. O. Maltose and glucose utilization during fermentation of barley and sorghum lager beers as affected by β-amylase or amyloglucosidase addition. J. Cereal Sci. 60, 602–609 (2014).

    Google Scholar 

  9. Mondal, P., Sadhukhan, A. K., Ganguly, A. & Gupta, P. Optimization of process parameters for bio-enzymatic and enzymatic saccharification of waste broken rice for ethanol production using response surface methodology and artificial neural network–genetic algorithm. 3 Biotech. 11, 28 (2021).

    Google Scholar 

  10. Gong, E. S. et al. Phytochemical profiles and antioxidant activity of brown rice varieties. Food Chem. 227, 432–443 (2017).

    Google Scholar 

  11. Saleh, A. S. M., Wang, P., Wang, N., Yang, L. & Xiao, Z. Brown rice versus white rice: Nutritional quality, potential health benefits, development of food products, and preservation technologies. Compr. Rev. Food Sci. Food Saf. 18, 1070–1096 (2019).

    Google Scholar 

  12. Seo, W. D. et al. Comparative analysis of physicochemicals and antioxidative properties in new red rice (Oryza sativa L. cv. Gunganghongmi). J. Crop Sci. Biotechnol. 16, 63–68 (2013).

    Google Scholar 

  13. Vo Minh, H. & Nguyen Duc, T. Response surface optimization of enzymatic hydrolysis of germinated brown rice for higher reducing sugar production. Viet J. Food Control. 5, 645–657 (2022).

    Google Scholar 

  14. Zahra, N. & Jabeen, S. Brown rice as useful nutritional source. Pak J. Agric. Res. 33, 445 (2020).

    Google Scholar 

  15. Miller, G. L. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426–428 (1959).

    Google Scholar 

  16. DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).

    Google Scholar 

  17. Klein, H. & Leubolt, R. Ion-exchange high-performance liquid chromatography in the brewing industry. J. Chromatogr. A. 640, 259–270 (1993).

    Google Scholar 

  18. Abedi, E., Kaveh, S., Mohammad, B. & Hashemi, S. M. B. Structure-based modification of a-amylase by conventional and emerging technologies: comparative study on the secondary structure, activity, thermal stability and amylolysis efficiency. Food Chem. 437, 137903 (2024).

    Google Scholar 

  19. Kim, H. R., Kwon, Y. H., Jo, S. J., Kim, J. H. & Ahn, B. H. Characterization and volatile flavor components in glutinous rice wines prepared with different yeasts of Nutuks. Korean J. Food Sci. Technol. 41, 296–301 (2009).

    Google Scholar 

  20. Cho, J. H. Effects of growing climatic environment on growth, soluble sugar, and enzyme activity changes in Asian pear fruits. PhD Thesis (Chonnam Natl Univ., 2023) 4–8.

  21. Eed, J. Factors affecting enzyme activity. Essai 10, 19 (2012). https://dc.cod.edu/essai/vol10/iss1/19

    Google Scholar 

  22. Dutta, T. K., Jana, M., Pahari, P. R. & Bhattacharya, T. The effect of temperature, pH, and salt on amylase in Heliodiaptomus viduus (Gurney) (Crustacea: Copepoda: Calanoida). Turk. J. Zool. 30, 187–195 (2006).

    Google Scholar 

  23. Kim, S. H., Oh, S. Y., Jeong, Y. J. & Kwon, J. H. Changes in characteristics of the ancient grain farro according to liquefaction and saccharification processes. Food Sci. Preserv. 32, 17–29 (2025).

    Google Scholar 

  24. Alenyorege, E. A. et al. Response surface methodology centred optimization of mono-frequency ultrasound reduction of bacteria in fresh-cut Chinese cabbage and its effect on quality. LWT 122, 108991 (2020).

    Google Scholar 

  25. Cai, B. Y., Ge, J. P., Ling, H. Z., Cheng, K. K. & Ping, W. X. Statistical optimization of dilute sulfuric acid pretreatment of corncob for xylose recovery and ethanol production. Biomass Bioenergy 36, 250–257 (2012).

    Google Scholar 

  26. Prasetiyo, H. et al. Optimizing the coating for masking conditions process with gum Arabic using Box-Behnken design (BBD) on the properties of masked Spirulina Powder. BIO Web Conf. 176, 02010 (2025).

    Google Scholar 

  27. Körbahti, B. K. & Rauf, M. A. Response surface methodology (RSM) analysis of photoinduced decoloration of toludine blue. Chem. Eng. J. 136, 25–30 (2008).

    Google Scholar 

  28. An, J. O., Chung, C. H. & Lee, S. J. Effect of rice pre-treatment on enzymatic saccharification in the brewing process. Microbiol. Biotechnol. Lett. 45, 277–283 (2017).

    Google Scholar 

  29. Kim, H. S. & Kang, Y. J. Optimal conditions of saccharification for a traditional malt syrup in Cheju. Korean J. Food Sci. Technol. 26, 659–664 (1994).

    Google Scholar 

  30. Maicas, S. The role of yeasts in fermentation processes. Microorganisms 8, 1142 (2020).

    Google Scholar 

  31. Park, J. H., Yeo, S. H., Choi, J. H., Jeong, S. T. & Choi, H. S. Production of makgeolli using rice treated with Gaeryang-Nuruk (for non-steaming process) extract. Food Sci. Preserv. 19, 144–152 (2012).

    Google Scholar 

  32. Serrano-Febles, J. et al. Optimization of enzymatic hydrolysis of corn starch to obtain glucose syrups by genetic algorithm [Optimización de la hidrólisis enzimática del almidón de maíz para obtener siropes de glucosa mediante algoritmos genéticos]. DYNA 92, 83–91 (2025).

    Google Scholar 

  33. Lee, J. S. et al. Exploration of optimum conditions for production of saccharogenic mixed grain beverages and assessment of anti-diabetic activity. J. Nutr. Health. 47, 12–22 (2014).

    Google Scholar 

  34. Nabatian, E., Dolatabadi, M. & Ahmadzadeh, S. Application of experimental design methodology to optimize acetaminophen removal from aqueous environment by magnetic chitosan@multi-walled carbon nanotube composite: Isotherm, kinetic, and regeneration studies. Anal. Method. Environ. Chem. J. 5, 61–74 (2022).

    Google Scholar 

  35. Bae, S. M. et al. Preparation and characterization of sweet persimmon wine. Appl. Biol. Chem. 45, 66–70 (2002).

    Google Scholar 

  36. Kim, J. Y. & Yi, Y. H. pH, acidity, color, amino acids, reducing sugars, total sugars, and alcohol in puffed millet powder containing millet takju during fermentation. Korean J. Food Sci. Technol. 42, 727 (2010).

    Google Scholar 

  37. Kim, M. J., Han, S. Y., Kang, D., Shin, J. H. & Lee, S. J. Functional insights into microbial communities of Korean traditional rice wine (makgeolli) during fermentation. LWT 210, 116826 (2024).

    Google Scholar 

  38. Lee, S., Yoo, M. & Shin, D. The identification and quantification of biogenic amines in Korean turbid rice wine, makgeolli by HPLC with mass spectrometry detection. LWT 62, 350–356 (2015).

    Google Scholar 

  39. Wong, B. et al. Characterisation of Korean rice wine (makgeolli) prepared by different processing methods. Curr. Res. Food Sci. 6, 100420 (2023).

    Google Scholar 

Download references