References
-
Datar, I. & Betti, M. Possibilities for an in vitro meat production system. Innov. Food Sci. Emerg. Technol. 11, 13–22 (2010).
-
Hong, T. K., Shin, D.-M., Choi, J., Do, J. T. & Han, S. G. Current issues and technical advances in cultured meat production: a review. Food Sci. Anim. Resour. 41, 355 (2021).
-
Post, M. J. Cultured beef: medical technology to produce food. J. Sci. Food Agric. 94, 1039–1041 (2014).
-
Post, M. J. et al. Sci. Sustain. Regul. Chall. Cult. Meat 1, 403–415 (2020).
-
Collins, C. A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005).
-
Ding, S. et al. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discov. 3, 1–11 (2017).
-
Keefe, A. C. et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat. Commun. 6, 7087 (2015).
-
Redshaw, Z., McOrist, S. & Loughna, P. Muscle origin of porcine satellite cells affects in vitro differentiation potential. Cell Biochem. Funct. 28, 403–411 (2010).
-
Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013).
-
Biressi, S. & Rando, T. A. Heterogeneity in the muscle satellite cell population. Semin. Cell Dev. Biol. 21, 845–854 (2010).
-
Kalhovde, J. et al. Fast’and ‘slow’muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells. J. Physiol. 562, 847–857 (2005).
-
Ono, Y., Boldrin, L., Knopp, P., Morgan, J. E. & Zammit, P. S. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev. Biol. 337, 29–41 (2010).
-
Pallafacchina, G., Blaauw, B. & Schiaffino, S. Role of satellite cells in muscle growth and maintenance of muscle mass. Nutr. Metab. Cardiovasc. Dis. 23, S12–S18 (2013).
-
Komiya, Y. et al. Correlation between skeletal muscle fiber type and responses of a taste sensing system in various beef samples. Anim. Sci. J. 91, e13425 (2020).
-
Mootoosamy, R. C. Distinct regulatory cascades for head and trunk myogenesis. Development 129, 573–83 (2002).
-
Porter, J. D. et al. Distinctive morphological and gene/protein expression signatures during myogenesis in novel cell lines from extraocular and hindlimb muscle. Physiol. Genom. 24, 264–275 (2006).
-
Heude, E. et al. Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. Elife 7, e40179 (2018).
-
Yahya, I., Morosan-Puopolo, G. & Brand-Saberi, B. The CXCR4/SDF-1 Axis in the development of facial expression and non-somitic neck muscles. Front. Cell Dev. Biol. 8, 615264 (2020).
-
Noden, D. M. & Francis-West, P. The differentiation and morphogenesis of craniofacial muscles. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 235, 1194–1218 (2006).
-
Braun, T. & Gautel, M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat. Rev. Mol. Cell Biol. 12, 349–361 (2011).
-
Dietrich, S. Regulation of hypaxial muscle development. Cell Tissue Res. 296, 175–182 (1999).
-
Buckingham, M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet. Dev. 16, 525–532 (2006).
-
Harel, I. et al. Distinct origins and genetic programs of head muscle satellite cells. Dev. Cell 16, 822–832 (2009).
-
Apiou, F. et al. Fine mapping of human HOX gene clusters. Cytogenet. Genome Res. 73, 114–115 (1996).
-
Garcia-Fernàndez, J. The genesis and evolution of homeobox gene clusters. Nat. Rev. Genet. 6, 881–892 (2005).
-
Rux, D. R. & Wellik, D. M. Hox genes in the adult skeleton: novel functions beyond embryonic development. Dev. Dyn. 246, 310–317 (2017).
-
Seifert, A., Werheid, D. F., Knapp, S. M. & Tobiasch, E. Role of Hox genes in stem cell differentiation. World J. Stem Cells 7, 583 (2015).
-
Lin, X. iangsheng et al. Hoxa1 and Hoxa13 facilitate slow-twitch muscle formaiton in C2C12 cells and indirectly affect the lipid deposition of 3T3-L1 cells. Anim. Sci. J. 92, e13544 (2021).
-
Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786 (2000).
-
Cornelison, D. & Wold, B. J. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol. 191, 270–283 (1997).
-
Asakura, A., Rudnicki, M. A. & Komaki, M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68, 245–253 (2001).
-
Dusterhöft, S., Yablonka-Reuveni, Z. & Pette, D. Characterization of myosin isoforms in satellite cell cultures from adult rat diaphragm, soleus and tibialis anterior muscles. Differentiation 45, 185–191 (1990).
-
Lagord, C. et al. Differential myogenicity of satellite cells isolated from extensor digitorum longus (EDL) and soleus rat muscles revealed in vitro. Cell Tissue Res. 291, 455–468 (1998).
-
Martelly, I. et al. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles. Cell. Mol. Biol. 46, 1239–1248 (2000).
-
Ono, Y. et al. Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle. J. Cell Sci. 125, 1309–1317 (2012).
-
Perruchot, M.-H., Ecolan, P., Sorensen, I. L., Oksbjerg, N. & Lefaucheur, L. In vitro characterization of proliferation and differentiation of pig satellite cells. Differentiation 84, 322–329 (2012).
-
Queeno, S. R., Sterner, K. N. & O’Neill, M. C. Meta-analysis data of skeletal muscle slow fiber content across mammalian species. Data Brief. 50, 109520 (2023).
-
Karlsson, A. H., Klont, R. E. & Fernandez, X. Skeletal muscle fibres as factors for pork quality. Livest. Prod. Sci. 60, 255–269 (1999).
-
Essén-Gustavsson, B. & Fjelkner-Modig, S. Skeletal muscle characteristics in different breeds of pigs in relation to sensory properties of meat. Meat Sci. 13, 33–47 (1985).
-
Schiaffino, S. & Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 91, 1447–1531 (2011).
-
Lefaucheur, L. A second look into fibre typing–relation to meat quality. Meat Sci. 84, 257–270 (2010).
-
Miao, X., Hastie, M., Ha, M. & Warner, R. Consumer response to blended beef burgers and chicken nuggets is influenced by ingredient and nutrition claims-qualitative assessment. Future Foods 8, 100247 (2023).
-
Masih, J. Understanding health-foods consumer perception using big data analytics. J. Manag. Inf. Decis. Sci. 24, 1–15 (2021).
-
de, L. as, Heras-Saldana, S., Chung, K. Y., Lee, S. H. & Gondro, C. Gene expression of Hanwoo satellite cell differentiation in longissimus dorsi and semimembranosus. BMC Genom. 20, 1–15 (2019).
-
Evano, B. et al. Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation. PLoS Genet. 16, e1009022 (2020).
-
Grieshammer, U., Sassoon, D. & Rosenthal, N. A transgene target for positional regulators marks early rostrocaudal specification of myogenic lineages. Cell 69, 79–93 (1992).
-
Jin, L. et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nat. Commun. 12, 3715 (2021).
-
Yoshioka, K. et al. Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle. Sci. Adv. 7, eabd7924 (2021).
-
Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995).
-
Houghton, L. & Rosenthal, N. Regulation of a muscle-specific transgene by persistent expression of Hox genes in postnatal murine limb muscle. Dev. Dyn. 216, 385–397 (1999).
-
Yamamoto, M. & Kuroiwa, A. Hoxa-11 and Hoxa-13 are involved in repression of MyoD during limb muscle development. Dev. growth Differ. 45, 485–498 (2003).
-
Poliacikova, G., Maurel-Zaffran, C., Graba, Y. & Saurin, A. J. Hox proteins in the regulation of muscle development. Front. Cell Dev. Biol. 9, 731996 (2021).
-
Schwoerer, S. et al. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals. Nature 540, 428–432 (2016).
-
Dhar, G. A., Saha, S., Mitra, P. & Nag Chaudhuri, R. DNA methylation and regulation of gene expression: guardian of our health. Nucleus 64, 259–270 (2021).
-
Bonder, M. J. et al. Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC genom. 15, 1–13 (2014).
-
Beckman, W. F., Jiménez, M.ÁL. & Verschure, P. J. Transcription bursting and epigenetic plasticity: an updated view. Epigenetics Commun. 1, 6 (2021).
-
Relaix, F. et al. Six homeoproteins directly activate Myod expression in the gene regulatory networks that control early myogenesis. PLoS Genet. 9, e1003425 (2013).
-
Imbriano, C. & Molinari, S. Alternative splicing of transcription factors genes in muscle physiology and pathology. Genes 9, 107 (2018).
-
Giordani, J. et al. Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs. Proc. Natl. Acad. Sci. USA 104, 11310–11315 (2007).
-
Rodriguez-Esteban, C. et al. The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398, 814–818 (1999).
-
Naiche, L. & Papaioannou, V. E. Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130, 2681–93 (2003).
-
Chao, Z. et al. Molecular characterization and expression patterns of Lbx1 in porcine skeletal muscle. Mol. Biol. Rep. 38, 3983–3991 (2011).
-
Walker, J. T., Flynn, L. E. & Hamilton, D. W. Lineage tracing of Foxd1-expressing embryonic progenitors to assess the role of divergent embryonic lineages on adult dermal fibroblast function. FASEB BioAdvances 3, 541 (2021).
-
Daston, G., Lamar, E., Olivier, M. & Goulding, M. Pax-3 is necessary for migration but not differentiation of limb muscle precursors in the mouse. Development 122, 1017–1027 (1996).
-
Relaix, F. et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J. Cell Biol. 172, 91–102 (2006).
-
Günther, S. et al. Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13, 590–601 (2013).
-
Mesires, N. T. & Doumit, M. E. Satellite cell proliferation and differentiation during postnatal growth of porcine skeletal muscle. Am. J. Physiol. Cell Physiol. 282, C899–C906 (2002).
-
Park, J., Choi, H. & Shim, K. Inhibition of GSK3β promotes proliferation and suppresses apoptosis of porcine muscle satellite cells. Animals 12, 3328 (2022).
-
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
-
Zhu, Q., Fisher, S. A., Shallcross, J. & Kim, J. VERSE: a versatile and efficient RNA-Seq read counting tool. bioRxiv 053306 (2016).
-
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).
-
Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84) (Vienna, 2017).
-
Wickham, H. & Sievert, C. ggplot2: elegant graphics for data analysis. Vol. 10 (Springer, 2009).
-
Warnes, G. R. et al. gplots: various R programming tools for plotting data. R package version 3. https://CRAN.R-project.org/package=gplots (2016).
-
Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).
