Optimizing muscle satellite cell sources for cultured meat: anatomical origin influences cellular properties and quality attributes

optimizing-muscle-satellite-cell-sources-for-cultured-meat:-anatomical-origin-influences-cellular-properties-and-quality-attributes
Optimizing muscle satellite cell sources for cultured meat: anatomical origin influences cellular properties and quality attributes

References

  1. Datar, I. & Betti, M. Possibilities for an in vitro meat production system. Innov. Food Sci. Emerg. Technol. 11, 13–22 (2010).

    Google Scholar 

  2. Hong, T. K., Shin, D.-M., Choi, J., Do, J. T. & Han, S. G. Current issues and technical advances in cultured meat production: a review. Food Sci. Anim. Resour. 41, 355 (2021).

    Google Scholar 

  3. Post, M. J. Cultured beef: medical technology to produce food. J. Sci. Food Agric. 94, 1039–1041 (2014).

    Google Scholar 

  4. Post, M. J. et al. Sci. Sustain. Regul. Chall. Cult. Meat 1, 403–415 (2020).

    Google Scholar 

  5. Collins, C. A. et al. Stem cell function, self-renewal, and behavioral heterogeneity of cells from the adult muscle satellite cell niche. Cell 122, 289–301 (2005).

    Google Scholar 

  6. Ding, S. et al. Characterization and isolation of highly purified porcine satellite cells. Cell Death Discov. 3, 1–11 (2017).

    Google Scholar 

  7. Keefe, A. C. et al. Muscle stem cells contribute to myofibres in sedentary adult mice. Nat. Commun. 6, 7087 (2015).

    Google Scholar 

  8. Redshaw, Z., McOrist, S. & Loughna, P. Muscle origin of porcine satellite cells affects in vitro differentiation potential. Cell Biochem. Funct. 28, 403–411 (2010).

    Google Scholar 

  9. Yin, H., Price, F. & Rudnicki, M. A. Satellite cells and the muscle stem cell niche. Physiol. Rev. 93, 23–67 (2013).

    Google Scholar 

  10. Biressi, S. & Rando, T. A. Heterogeneity in the muscle satellite cell population. Semin. Cell Dev. Biol. 21, 845–854 (2010).

  11. Kalhovde, J. et al. Fast’and ‘slow’muscle fibres in hindlimb muscles of adult rats regenerate from intrinsically different satellite cells. J. Physiol. 562, 847–857 (2005).

    Google Scholar 

  12. Ono, Y., Boldrin, L., Knopp, P., Morgan, J. E. & Zammit, P. S. Muscle satellite cells are a functionally heterogeneous population in both somite-derived and branchiomeric muscles. Dev. Biol. 337, 29–41 (2010).

    Google Scholar 

  13. Pallafacchina, G., Blaauw, B. & Schiaffino, S. Role of satellite cells in muscle growth and maintenance of muscle mass. Nutr. Metab. Cardiovasc. Dis. 23, S12–S18 (2013).

    Google Scholar 

  14. Komiya, Y. et al. Correlation between skeletal muscle fiber type and responses of a taste sensing system in various beef samples. Anim. Sci. J. 91, e13425 (2020).

    Google Scholar 

  15. Mootoosamy, R. C. Distinct regulatory cascades for head and trunk myogenesis. Development 129, 573–83 (2002).

  16. Porter, J. D. et al. Distinctive morphological and gene/protein expression signatures during myogenesis in novel cell lines from extraocular and hindlimb muscle. Physiol. Genom. 24, 264–275 (2006).

    Google Scholar 

  17. Heude, E. et al. Unique morphogenetic signatures define mammalian neck muscles and associated connective tissues. Elife 7, e40179 (2018).

    Google Scholar 

  18. Yahya, I., Morosan-Puopolo, G. & Brand-Saberi, B. The CXCR4/SDF-1 Axis in the development of facial expression and non-somitic neck muscles. Front. Cell Dev. Biol. 8, 615264 (2020).

    Google Scholar 

  19. Noden, D. M. & Francis-West, P. The differentiation and morphogenesis of craniofacial muscles. Dev. Dyn. Off. Publ. Am. Assoc. Anat. 235, 1194–1218 (2006).

    Google Scholar 

  20. Braun, T. & Gautel, M. Transcriptional mechanisms regulating skeletal muscle differentiation, growth and homeostasis. Nat. Rev. Mol. Cell Biol. 12, 349–361 (2011).

    Google Scholar 

  21. Dietrich, S. Regulation of hypaxial muscle development. Cell Tissue Res. 296, 175–182 (1999).

    Google Scholar 

  22. Buckingham, M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet. Dev. 16, 525–532 (2006).

    Google Scholar 

  23. Harel, I. et al. Distinct origins and genetic programs of head muscle satellite cells. Dev. Cell 16, 822–832 (2009).

    Google Scholar 

  24. Apiou, F. et al. Fine mapping of human HOX gene clusters. Cytogenet. Genome Res. 73, 114–115 (1996).

    Google Scholar 

  25. Garcia-Fernàndez, J. The genesis and evolution of homeobox gene clusters. Nat. Rev. Genet. 6, 881–892 (2005).

    Google Scholar 

  26. Rux, D. R. & Wellik, D. M. Hox genes in the adult skeleton: novel functions beyond embryonic development. Dev. Dyn. 246, 310–317 (2017).

    Google Scholar 

  27. Seifert, A., Werheid, D. F., Knapp, S. M. & Tobiasch, E. Role of Hox genes in stem cell differentiation. World J. Stem Cells 7, 583 (2015).

    Google Scholar 

  28. Lin, X. iangsheng et al. Hoxa1 and Hoxa13 facilitate slow-twitch muscle formaiton in C2C12 cells and indirectly affect the lipid deposition of 3T3-L1 cells. Anim. Sci. J. 92, e13544 (2021).

    Google Scholar 

  29. Seale, P. et al. Pax7 is required for the specification of myogenic satellite cells. Cell 102, 777–786 (2000).

    Google Scholar 

  30. Cornelison, D. & Wold, B. J. Single-cell analysis of regulatory gene expression in quiescent and activated mouse skeletal muscle satellite cells. Dev. Biol. 191, 270–283 (1997).

    Google Scholar 

  31. Asakura, A., Rudnicki, M. A. & Komaki, M. Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic, and adipogenic differentiation. Differentiation 68, 245–253 (2001).

    Google Scholar 

  32. Dusterhöft, S., Yablonka-Reuveni, Z. & Pette, D. Characterization of myosin isoforms in satellite cell cultures from adult rat diaphragm, soleus and tibialis anterior muscles. Differentiation 45, 185–191 (1990).

    Google Scholar 

  33. Lagord, C. et al. Differential myogenicity of satellite cells isolated from extensor digitorum longus (EDL) and soleus rat muscles revealed in vitro. Cell Tissue Res. 291, 455–468 (1998).

    Google Scholar 

  34. Martelly, I. et al. Differential expression of FGF receptors and of myogenic regulatory factors in primary cultures of satellite cells originating from fast (EDL) and slow (Soleus) twitch rat muscles. Cell. Mol. Biol. 46, 1239–1248 (2000).

    Google Scholar 

  35. Ono, Y. et al. Slow-dividing satellite cells retain long-term self-renewal ability in adult muscle. J. Cell Sci. 125, 1309–1317 (2012).

    Google Scholar 

  36. Perruchot, M.-H., Ecolan, P., Sorensen, I. L., Oksbjerg, N. & Lefaucheur, L. In vitro characterization of proliferation and differentiation of pig satellite cells. Differentiation 84, 322–329 (2012).

    Google Scholar 

  37. Queeno, S. R., Sterner, K. N. & O’Neill, M. C. Meta-analysis data of skeletal muscle slow fiber content across mammalian species. Data Brief. 50, 109520 (2023).

    Google Scholar 

  38. Karlsson, A. H., Klont, R. E. & Fernandez, X. Skeletal muscle fibres as factors for pork quality. Livest. Prod. Sci. 60, 255–269 (1999).

    Google Scholar 

  39. Essén-Gustavsson, B. & Fjelkner-Modig, S. Skeletal muscle characteristics in different breeds of pigs in relation to sensory properties of meat. Meat Sci. 13, 33–47 (1985).

    Google Scholar 

  40. Schiaffino, S. & Reggiani, C. Fiber types in mammalian skeletal muscles. Physiol. Rev. 91, 1447–1531 (2011).

    Google Scholar 

  41. Lefaucheur, L. A second look into fibre typing–relation to meat quality. Meat Sci. 84, 257–270 (2010).

    Google Scholar 

  42. Miao, X., Hastie, M., Ha, M. & Warner, R. Consumer response to blended beef burgers and chicken nuggets is influenced by ingredient and nutrition claims-qualitative assessment. Future Foods 8, 100247 (2023).

    Google Scholar 

  43. Masih, J. Understanding health-foods consumer perception using big data analytics. J. Manag. Inf. Decis. Sci. 24, 1–15 (2021).

    Google Scholar 

  44. de, L. as, Heras-Saldana, S., Chung, K. Y., Lee, S. H. & Gondro, C. Gene expression of Hanwoo satellite cell differentiation in longissimus dorsi and semimembranosus. BMC Genom. 20, 1–15 (2019).

    Google Scholar 

  45. Evano, B. et al. Transcriptome and epigenome diversity and plasticity of muscle stem cells following transplantation. PLoS Genet. 16, e1009022 (2020).

    Google Scholar 

  46. Grieshammer, U., Sassoon, D. & Rosenthal, N. A transgene target for positional regulators marks early rostrocaudal specification of myogenic lineages. Cell 69, 79–93 (1992).

    Google Scholar 

  47. Jin, L. et al. A pig BodyMap transcriptome reveals diverse tissue physiologies and evolutionary dynamics of transcription. Nat. Commun. 12, 3715 (2021).

    Google Scholar 

  48. Yoshioka, K. et al. Hoxa10 mediates positional memory to govern stem cell function in adult skeletal muscle. Sci. Adv. 7, eabd7924 (2021).

    Google Scholar 

  49. Burke, A. C., Nelson, C. E., Morgan, B. A. & Tabin, C. Hox genes and the evolution of vertebrate axial morphology. Development 121, 333–346 (1995).

    Google Scholar 

  50. Houghton, L. & Rosenthal, N. Regulation of a muscle-specific transgene by persistent expression of Hox genes in postnatal murine limb muscle. Dev. Dyn. 216, 385–397 (1999).

    Google Scholar 

  51. Yamamoto, M. & Kuroiwa, A. Hoxa-11 and Hoxa-13 are involved in repression of MyoD during limb muscle development. Dev. growth Differ. 45, 485–498 (2003).

    Google Scholar 

  52. Poliacikova, G., Maurel-Zaffran, C., Graba, Y. & Saurin, A. J. Hox proteins in the regulation of muscle development. Front. Cell Dev. Biol. 9, 731996 (2021).

    Google Scholar 

  53. Schwoerer, S. et al. Epigenetic stress responses induce muscle stem-cell ageing by Hoxa9 developmental signals. Nature 540, 428–432 (2016).

    Google Scholar 

  54. Dhar, G. A., Saha, S., Mitra, P. & Nag Chaudhuri, R. DNA methylation and regulation of gene expression: guardian of our health. Nucleus 64, 259–270 (2021).

    Google Scholar 

  55. Bonder, M. J. et al. Genetic and epigenetic regulation of gene expression in fetal and adult human livers. BMC genom. 15, 1–13 (2014).

    Google Scholar 

  56. Beckman, W. F., Jiménez, M.ÁL. & Verschure, P. J. Transcription bursting and epigenetic plasticity: an updated view. Epigenetics Commun. 1, 6 (2021).

    Google Scholar 

  57. Relaix, F. et al. Six homeoproteins directly activate Myod expression in the gene regulatory networks that control early myogenesis. PLoS Genet. 9, e1003425 (2013).

    Google Scholar 

  58. Imbriano, C. & Molinari, S. Alternative splicing of transcription factors genes in muscle physiology and pathology. Genes 9, 107 (2018).

    Google Scholar 

  59. Giordani, J. et al. Six proteins regulate the activation of Myf5 expression in embryonic mouse limbs. Proc. Natl. Acad. Sci. USA 104, 11310–11315 (2007).

    Google Scholar 

  60. Rodriguez-Esteban, C. et al. The T-box genes Tbx4 and Tbx5 regulate limb outgrowth and identity. Nature 398, 814–818 (1999).

    Google Scholar 

  61. Naiche, L. & Papaioannou, V. E. Loss of Tbx4 blocks hindlimb development and affects vascularization and fusion of the allantois. Development 130, 2681–93 (2003).

  62. Chao, Z. et al. Molecular characterization and expression patterns of Lbx1 in porcine skeletal muscle. Mol. Biol. Rep. 38, 3983–3991 (2011).

    Google Scholar 

  63. Walker, J. T., Flynn, L. E. & Hamilton, D. W. Lineage tracing of Foxd1-expressing embryonic progenitors to assess the role of divergent embryonic lineages on adult dermal fibroblast function. FASEB BioAdvances 3, 541 (2021).

    Google Scholar 

  64. Daston, G., Lamar, E., Olivier, M. & Goulding, M. Pax-3 is necessary for migration but not differentiation of limb muscle precursors in the mouse. Development 122, 1017–1027 (1996).

    Google Scholar 

  65. Relaix, F. et al. Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J. Cell Biol. 172, 91–102 (2006).

    Google Scholar 

  66. Günther, S. et al. Myf5-positive satellite cells contribute to Pax7-dependent long-term maintenance of adult muscle stem cells. Cell Stem Cell 13, 590–601 (2013).

    Google Scholar 

  67. Mesires, N. T. & Doumit, M. E. Satellite cell proliferation and differentiation during postnatal growth of porcine skeletal muscle. Am. J. Physiol. Cell Physiol. 282, C899–C906 (2002).

    Google Scholar 

  68. Park, J., Choi, H. & Shim, K. Inhibition of GSK3β promotes proliferation and suppresses apoptosis of porcine muscle satellite cells. Animals 12, 3328 (2022).

    Google Scholar 

  69. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).

    Google Scholar 

  70. Zhu, Q., Fisher, S. A., Shallcross, J. & Kim, J. VERSE: a versatile and efficient RNA-Seq read counting tool. bioRxiv 053306 (2016).

  71. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Google Scholar 

  72. Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation Matrix (Version 0.84) (Vienna, 2017).

  73. Wickham, H. & Sievert, C. ggplot2: elegant graphics for data analysis. Vol. 10 (Springer, 2009).

  74. Warnes, G. R. et al. gplots: various R programming tools for plotting data. R package version 3. https://CRAN.R-project.org/package=gplots (2016).

  75. Huang, D. W., Sherman, B. T. & Lempicki, R. A. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 44–57 (2009).

    Google Scholar 

Download references