References
-
Kumar, A., Kumar, V., Gull, A. & Nayik, G. A. Tomato (Solanum Lycopersicon). Antioxidants in Vegetables and Nuts—Properties and Health Benefits 191–207 (2020) https://doi.org/10.1007/978-981-15-7470-2_10.
-
Aflitos, S. et al. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 80, 136–148 (2014).
-
Wang, H. et al. Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation. Agric Water Manag 245, 106662 (2021).
-
Fuentes-Peñailillo, F., Gutter, K., Vega, R. & Silva, G. C. New Generation Sustainable Technologies for Soilless Vegetable Production. Horticulturae 10(10), 49 (2024).
-
Pomoni, D. I., Koukou, M. K., Vrachopoulos, M. G. & Vasiliadis, L. A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use. Energies 16, 1690 (2023).
-
Tegeder, M. & Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 217, 35–53 (2018).
-
van der Ent, A., Kopittke, P. M., Schat, H. & Chaney, R. L. Hydroponics in physiological studies of trace element tolerance and accumulation in plants focussing on metallophytes and hyperaccumulator plants. Plant Soil 501, 573–594 (2024).
-
Nguyen, N. T., McInturf, S. A. & Mendoza-Cózatl, D. G. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements. J Vis Exp 2016, 54317 (2016).
-
ScholarsArchive, B., Keith Jacobson, D. & Keith, D. Deficient, Adequate and Excess Nitrogen, Phosphorus, and Potassium Growth Curves Established in Hydroponics for Biotic and Abiotic Stress-Interaction Studies in Lettuce BYU ScholarsArchive Citation. https://scholarsarchive.byu.edu/etd (2016).
-
Kathpalia, R. & Bhatla, S. C. Plant Mineral Nutrition. Plant Physiology, Development and Metabolism 37–81 (2018) https://doi.org/10.1007/978-981-13-2023-1_2.
-
Anjum, M. A. A. et al. Establishment and Maintenance of Brassica Alba and Solanum Lycopersicum on Hydroponic Culture at Laboratory Condition. J Biosci (Rajshari) 31, 87–98 (2023).
-
Arnon, D. I. Copper enzymes in isolated chloroplasts polyphenoloxidase in beta vulgaris. Plant Physiol. 24, 1 (1949).
-
Wellburn, A. R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant. Physiol. 144, 307–313 (1994).
-
Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. Anal. Chem. 22, 366–382 (1883).
-
López-Hidalgo, C., Meijón, M., Lamelas, L. & Valledor, L. The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant Cell Environ 44, 1977–1986 (2021).
-
Luo, X., Science, Q. H.-J. of A. & 2011, undefined. Relationships between leaf and stem soluble sugar content and tuberous root starch accumulation in cassava. pdfs.semanticscholar.orgX Luo, Q HuangJournal of Agricultural Science, pdfs.semanticscholar.org 3, (2011).
-
Stevenson, S. E. et al. Environmental effects on allergen levels in commercially grown non-genetically modified soybeans: Assessing variation across North America. Front Plant Sci 3, 25267 (2012).
-
NV, P., PA, V., Vemanna, R., MS, S. & Makarla, U. Quantification of membrane damage/cell death using Evan’s blue staining technique. bio-protocol.org 7, (2017).
-
Paul, G. K. et al. Volatile compounds of Bacillus pseudomycoides induce growth and drought tolerance in wheat (Triticum aestivum L.). Sci. Rep. 12, 1–18 (2022).
-
Magné, C. & Larher, F. High sugar content of extracts interferes with colorimetric determination of amino acids and free proline. Anal. Biochem. 200, 115–118 (1992).
-
Verma, S. & Dubey, R. S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164, 645–655 (2003).
-
Marschner, H. Mineral nutrition of higher plants. https://www.cabidigitallibrary.org/doi/full/https://doi.org/10.5555/19950708651 (1995).
-
Scherer, H. W. Sulphur in crop production — invited paper. Eur. J. Agron. 14, 81–111 (2001).
-
Hawkesford, M. J. & De Kok, L. J. Managing sulphur metabolism in plants. Plant Cell Environ. 29, 382–395 (2006).
-
Kopriva, S. & Rennenberg, H. Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J. Exp. Bot. 55, 1831–1842 (2004).
-
Eriksen, J. Chapter 2 Soil Sulfur Cycling in Temperate Agricultural Systems. Advances in Agronomy 102, 55–89 (2009).
-
Zhao, F. J., Hawkesford, M. J. & McGrath, S. P. Sulphur Assimilation and Effects on Yield and Quality of Wheat. J Cereal Sci 30, 1–17 (1999).
-
LustosaSobrinho, R. et al. Jatropha curcas L. as a Plant Model for Studies on Vegetative Propagation of Native Forest Plants. Plants 11, 2457 (2022).
-
Ellis, R. H. & Roberts, E. H. Improved Equations for the Prediction of Seed Longevity. Ann Bot 45, 13–30 (1980).
-
Ahmad, A. & Abdin, M. Z. Effect of sulphur application on lipid, RNA and fatty acid content in developing seeds of rapeseed (Brassica campestris L.). Plant Sci. 150, 71–76 (2000).
-
Marschner, P. Rhizosphere Biology. Marschner’s Mineral Nutrition of Higher Plants: Third Edition 369–388 (2012) https://doi.org/10.1016/B978-0-12-384905-2.00015-7.
-
Editorial board. J Plant Nutr 23, ebi-ebi (2000).
-
Handbook of Plant Nutrition. (2016) https://doi.org/10.1201/9781420014877.
-
Bremner, J. M. Nitrogen-Total. Methods of Soil Analysis, Part 3: Chemical Methods 1085–1121 (2018) https://doi.org/10.2136/SSSABOOKSER5.3.C37.
-
Marschner, P. Marschner’s Mineral Nutrition of Higher Plants: Third Edition. Marschner’s Mineral Nutrition of Higher Plants: Third Edition 1–651 (2011) https://doi.org/10.1016/C2009-0-63043-9.
-
Lawlor, D. W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53, 773–787 (2002).
-
Lunde, C. et al. Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plant 134, 508–521 (2008).
-
Leustek, T. & Saito, K. Sulfate Transport and Assimilation in Plants. Plant Physiol 120, 637–644 (1999).
-
Chen, L. H., Xu, M., Cheng, Z. & Yang, L. T. Effects of Nitrogen Deficiency on the Photosynthesis, Chlorophyll a Fluorescence, Antioxidant System, and Sulfur Compounds in Oryza sativa. Int J Mol Sci 25, 10409 (2024).
-
Narayan, O. P., Kumar, P., Yadav, B., Dua, M. & Johri, A. K. Sulfur nutrition and its role in plant growth and development. Plant Signal Behav 18, 2030082 (2022).
-
Hirel, B., Le Gouis, J., Ney, B. & Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58, 2369–2387 (2007).
-
Blake-Kalff, M. M. A., Hawkesford, M. J., Zhao, F. J. & McGrath, S. P. Diagnosing sulfur deficiency in field-grown oilseed rape (Brassica napus L.) and wheat (Triticum aestivum L.). Plant Soil 225, 95–107 (2000).
-
Hawkesford, M. J. Improving Nutrient Use Efficiency in Crops. Encyclopedia of Life Sciences (2012) https://doi.org/10.1002/9780470015902.A0023734.
-
Nikiforova, V. J. et al. Systems Rebalancing of Metabolism in Response to Sulfur Deprivation, as Revealed by Metabolome Analysis of Arabidopsis Plants. Plant Physiol 138, 304–318 (2005).
-
Iqbal, N., Umar, S. & Khan, N. A. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178, 84–91 (2015).
-
Astolfi, S., Zuchi, S., De Cesare, F., Badalucco, L. & Grego, S. Cadmium-induced changes in soil biochemical characteristics of oat (Avena sativa L.) rhizosphere during early growth stages. Soil Res. 49, 642–651 (2011).
-
Britto, D. T. & Kronzucker, H. J. NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159, 567–584 (2002).
-
Takahashi, H., Kopriva, S., Giordano, M., Saito, K. & Hell, R. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62, 157–184 (2011).
-
Hasanuzzaman, M., Nahar, K., Anee, T. I. & Fujita, M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 23, 249–268 (2017).
-
Mittler, R. ROS Are Good. Trends Plant Sci 22, 11–19 (2017).
-
Marmagne, A., Masclaux-Daubresse, C. & Chardon, F. Modulation of plant nitrogen remobilization and postflowering nitrogen uptake under environmental stresses. J Plant Physiol 277, 153781 (2022).
-
Riggio, G. M., Jones, S. L. & Gibson, K. E. Risk of Human Pathogen Internalization in Leafy Vegetables During Lab-Scale Hydroponic Cultivation. Horticulturae 5, 25 (2019).
