Optimizing nitrogen and sulfur supplementation for enhanced growth and biochemical composition in Solanum lycopersicum under hydroponic conditions

optimizing-nitrogen-and-sulfur-supplementation-for-enhanced-growth-and-biochemical-composition-in-solanum-lycopersicum-under-hydroponic-conditions
Optimizing nitrogen and sulfur supplementation for enhanced growth and biochemical composition in Solanum lycopersicum under hydroponic conditions

References

  1. Kumar, A., Kumar, V., Gull, A. & Nayik, G. A. Tomato (Solanum Lycopersicon). Antioxidants in Vegetables and Nuts—Properties and Health Benefits 191–207 (2020) https://doi.org/10.1007/978-981-15-7470-2_10.

  2. Aflitos, S. et al. Exploring genetic variation in the tomato (Solanum section Lycopersicon) clade by whole-genome sequencing. Plant J. 80, 136–148 (2014).

    Google Scholar 

  3. Wang, H. et al. Optimization of water and fertilizer management improves yield, water, nitrogen, phosphorus and potassium uptake and use efficiency of cotton under drip fertigation. Agric Water Manag 245, 106662 (2021).

    Google Scholar 

  4. Fuentes-Peñailillo, F., Gutter, K., Vega, R. & Silva, G. C. New Generation Sustainable Technologies for Soilless Vegetable Production. Horticulturae 10(10), 49 (2024).

    Google Scholar 

  5. Pomoni, D. I., Koukou, M. K., Vrachopoulos, M. G. & Vasiliadis, L. A Review of Hydroponics and Conventional Agriculture Based on Energy and Water Consumption, Environmental Impact, and Land Use. Energies 16, 1690 (2023).

    Google Scholar 

  6. Tegeder, M. & Masclaux-Daubresse, C. Source and sink mechanisms of nitrogen transport and use. New Phytol. 217, 35–53 (2018).

    Google Scholar 

  7. van der Ent, A., Kopittke, P. M., Schat, H. & Chaney, R. L. Hydroponics in physiological studies of trace element tolerance and accumulation in plants focussing on metallophytes and hyperaccumulator plants. Plant Soil 501, 573–594 (2024).

    Google Scholar 

  8. Nguyen, N. T., McInturf, S. A. & Mendoza-Cózatl, D. G. Hydroponics: A Versatile System to Study Nutrient Allocation and Plant Responses to Nutrient Availability and Exposure to Toxic Elements. J Vis Exp 2016, 54317 (2016).

    Google Scholar 

  9. ScholarsArchive, B., Keith Jacobson, D. & Keith, D. Deficient, Adequate and Excess Nitrogen, Phosphorus, and Potassium Growth Curves Established in Hydroponics for Biotic and Abiotic Stress-Interaction Studies in Lettuce BYU ScholarsArchive Citation. https://scholarsarchive.byu.edu/etd (2016).

  10. Kathpalia, R. & Bhatla, S. C. Plant Mineral Nutrition. Plant Physiology, Development and Metabolism 37–81 (2018) https://doi.org/10.1007/978-981-13-2023-1_2.

  11. Anjum, M. A. A. et al. Establishment and Maintenance of Brassica Alba and Solanum Lycopersicum on Hydroponic Culture at Laboratory Condition. J Biosci (Rajshari) 31, 87–98 (2023).

    Google Scholar 

  12. Arnon, D. I. Copper enzymes in isolated chloroplasts polyphenoloxidase in beta vulgaris. Plant Physiol. 24, 1 (1949).

    Google Scholar 

  13. Wellburn, A. R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant. Physiol. 144, 307–313 (1994).

    Google Scholar 

  14. Kjeldahl, J. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern. Z. Anal. Chem. 22, 366–382 (1883).

    Google Scholar 

  15. López-Hidalgo, C., Meijón, M., Lamelas, L. & Valledor, L. The rainbow protocol: A sequential method for quantifying pigments, sugars, free amino acids, phenolics, flavonoids and MDA from a small amount of sample. Plant Cell Environ 44, 1977–1986 (2021).

    Google Scholar 

  16. Luo, X., Science, Q. H.-J. of A. & 2011, undefined. Relationships between leaf and stem soluble sugar content and tuberous root starch accumulation in cassava. pdfs.semanticscholar.orgX Luo, Q HuangJournal of Agricultural Science, pdfs.semanticscholar.org 3, (2011).

  17. Stevenson, S. E. et al. Environmental effects on allergen levels in commercially grown non-genetically modified soybeans: Assessing variation across North America. Front Plant Sci 3, 25267 (2012).

    Google Scholar 

  18. NV, P., PA, V., Vemanna, R., MS, S. & Makarla, U. Quantification of membrane damage/cell death using Evan’s blue staining technique. bio-protocol.org 7, (2017).

  19. Paul, G. K. et al. Volatile compounds of Bacillus pseudomycoides induce growth and drought tolerance in wheat (Triticum aestivum L.). Sci. Rep. 12, 1–18 (2022).

    Google Scholar 

  20. Magné, C. & Larher, F. High sugar content of extracts interferes with colorimetric determination of amino acids and free proline. Anal. Biochem. 200, 115–118 (1992).

    Google Scholar 

  21. Verma, S. & Dubey, R. S. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Sci. 164, 645–655 (2003).

    Google Scholar 

  22. Marschner, H. Mineral nutrition of higher plants. https://www.cabidigitallibrary.org/doi/full/https://doi.org/10.5555/19950708651 (1995).

  23. Scherer, H. W. Sulphur in crop production — invited paper. Eur. J. Agron. 14, 81–111 (2001).

    Google Scholar 

  24. Hawkesford, M. J. & De Kok, L. J. Managing sulphur metabolism in plants. Plant Cell Environ. 29, 382–395 (2006).

    Google Scholar 

  25. Kopriva, S. & Rennenberg, H. Control of sulphate assimilation and glutathione synthesis: interaction with N and C metabolism. J. Exp. Bot. 55, 1831–1842 (2004).

    Google Scholar 

  26. Eriksen, J. Chapter 2 Soil Sulfur Cycling in Temperate Agricultural Systems. Advances in Agronomy 102, 55–89 (2009).

  27. Zhao, F. J., Hawkesford, M. J. & McGrath, S. P. Sulphur Assimilation and Effects on Yield and Quality of Wheat. J Cereal Sci 30, 1–17 (1999).

    Google Scholar 

  28. LustosaSobrinho, R. et al. Jatropha curcas L. as a Plant Model for Studies on Vegetative Propagation of Native Forest Plants. Plants 11, 2457 (2022).

    Google Scholar 

  29. Ellis, R. H. & Roberts, E. H. Improved Equations for the Prediction of Seed Longevity. Ann Bot 45, 13–30 (1980).

    Google Scholar 

  30. Ahmad, A. & Abdin, M. Z. Effect of sulphur application on lipid, RNA and fatty acid content in developing seeds of rapeseed (Brassica campestris L.). Plant Sci. 150, 71–76 (2000).

    Google Scholar 

  31. Marschner, P. Rhizosphere Biology. Marschner’s Mineral Nutrition of Higher Plants: Third Edition 369–388 (2012) https://doi.org/10.1016/B978-0-12-384905-2.00015-7.

  32. Editorial board. J Plant Nutr 23, ebi-ebi (2000).

  33. Handbook of Plant Nutrition. (2016) https://doi.org/10.1201/9781420014877.

  34. Bremner, J. M. Nitrogen-Total. Methods of Soil Analysis, Part 3: Chemical Methods 1085–1121 (2018) https://doi.org/10.2136/SSSABOOKSER5.3.C37.

  35. Marschner, P. Marschner’s Mineral Nutrition of Higher Plants: Third Edition. Marschner’s Mineral Nutrition of Higher Plants: Third Edition 1–651 (2011) https://doi.org/10.1016/C2009-0-63043-9.

  36. Lawlor, D. W. Carbon and nitrogen assimilation in relation to yield: mechanisms are the key to understanding production systems. J Exp Bot 53, 773–787 (2002).

    Google Scholar 

  37. Lunde, C. et al. Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plant 134, 508–521 (2008).

    Google Scholar 

  38. Leustek, T. & Saito, K. Sulfate Transport and Assimilation in Plants. Plant Physiol 120, 637–644 (1999).

    Google Scholar 

  39. Chen, L. H., Xu, M., Cheng, Z. & Yang, L. T. Effects of Nitrogen Deficiency on the Photosynthesis, Chlorophyll a Fluorescence, Antioxidant System, and Sulfur Compounds in Oryza sativa. Int J Mol Sci 25, 10409 (2024).

    Google Scholar 

  40. Narayan, O. P., Kumar, P., Yadav, B., Dua, M. & Johri, A. K. Sulfur nutrition and its role in plant growth and development. Plant Signal Behav 18, 2030082 (2022).

    Google Scholar 

  41. Hirel, B., Le Gouis, J., Ney, B. & Gallais, A. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. J Exp Bot 58, 2369–2387 (2007).

    Google Scholar 

  42. Blake-Kalff, M. M. A., Hawkesford, M. J., Zhao, F. J. & McGrath, S. P. Diagnosing sulfur deficiency in field-grown oilseed rape (Brassica napus L.) and wheat (Triticum aestivum L.). Plant Soil 225, 95–107 (2000).

  43. Hawkesford, M. J. Improving Nutrient Use Efficiency in Crops. Encyclopedia of Life Sciences (2012) https://doi.org/10.1002/9780470015902.A0023734.

  44. Nikiforova, V. J. et al. Systems Rebalancing of Metabolism in Response to Sulfur Deprivation, as Revealed by Metabolome Analysis of Arabidopsis Plants. Plant Physiol 138, 304–318 (2005).

    Google Scholar 

  45. Iqbal, N., Umar, S. & Khan, N. A. Nitrogen availability regulates proline and ethylene production and alleviates salinity stress in mustard (Brassica juncea). J Plant Physiol 178, 84–91 (2015).

    Google Scholar 

  46. Astolfi, S., Zuchi, S., De Cesare, F., Badalucco, L. & Grego, S. Cadmium-induced changes in soil biochemical characteristics of oat (Avena sativa L.) rhizosphere during early growth stages. Soil Res. 49, 642–651 (2011).

  47. Britto, D. T. & Kronzucker, H. J. NH4+ toxicity in higher plants: a critical review. J Plant Physiol 159, 567–584 (2002).

    Google Scholar 

  48. Takahashi, H., Kopriva, S., Giordano, M., Saito, K. & Hell, R. Sulfur assimilation in photosynthetic organisms: Molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62, 157–184 (2011).

    Google Scholar 

  49. Hasanuzzaman, M., Nahar, K., Anee, T. I. & Fujita, M. Glutathione in plants: biosynthesis and physiological role in environmental stress tolerance. Physiol. Mol. Biol. Plants 23, 249–268 (2017).

    Google Scholar 

  50. Mittler, R. ROS Are Good. Trends Plant Sci 22, 11–19 (2017).

    Google Scholar 

  51. Marmagne, A., Masclaux-Daubresse, C. & Chardon, F. Modulation of plant nitrogen remobilization and postflowering nitrogen uptake under environmental stresses. J Plant Physiol 277, 153781 (2022).

    Google Scholar 

  52. Riggio, G. M., Jones, S. L. & Gibson, K. E. Risk of Human Pathogen Internalization in Leafy Vegetables During Lab-Scale Hydroponic Cultivation. Horticulturae 5, 25 (2019).

    Google Scholar 

Download references