Optimizing thiamine pyrophosphate metabolism enhances crop yield and quality

optimizing-thiamine-pyrophosphate-metabolism-enhances-crop-yield-and-quality
Optimizing thiamine pyrophosphate metabolism enhances crop yield and quality

References

  1. Yu, H. & Li, J. Short- and long-term challenges in crop breeding. Natl. Sci. Rev. 8, nwab002 (2021).

    Google Scholar 

  2. Ray, D. K., Mueller, N. D., West, P. C. & Foley, J. A. Yield trends are insufficient to double global crop production by 2050. PLoS One 8, e66428 (2013).

    Google Scholar 

  3. Jia, H. et al. A serine/threonine protein kinase encoding gene KERNEL NUMBER PER ROW6 regulates maize grain yield. Nat. Commun. 11, 988 (2020).

    Google Scholar 

  4. Luo, Y. et al. Genetic variation in YIGE1 contributes to ear length and grain yield in maize. N. Phytol. 234, 513–526 (2022).

    Google Scholar 

  5. Guan, J. C. et al. Divisions of labor in the thiamin biosynthetic pathway among organs of maize. Front. Plant Sci. 5, 370 (2014).

    Google Scholar 

  6. Bocobza, S. E. et al. Orchestration of thiamin biosynthesis and central metabolism by combined action of the thiamin pyrophosphate riboswitch and the circadian clock in Arabidopsis. Plant Cell 25, 288–307 (2013).

    Google Scholar 

  7. Goyer, A. Thiamine in plants: aspects of its metabolism and functions. Phytochemistry 71, 1615–1624 (2010).

    Google Scholar 

  8. Li, X. et al. Maize GOLDEN2-LIKE genes enhance biomass and grain yields in rice by improving photosynthesis and reducing photoinhibition. Commun. Biol. 3, 151 (2020).

    Google Scholar 

  9. Liang, Y., Liu, H.J., Yan, J. & Tian, F. Natural variation in crops: realized understanding, continuing promise. Annu. Rev. Plant Biol. 72, 357–372 (2021).

  10. Ning, Q. et al. An ethylene biosynthesis enzyme controls quantitative variation in maize ear length and kernel yield. Nat. Commun. 12, 5832 (2021).

    Google Scholar 

  11. Liu, L. et al. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet 11, e1005670 (2015).

    Google Scholar 

  12. Wang, J. et al. krn1, a major quantitative trait locus for kernel row number in maize. N. Phytol. 223, 1634–1646 (2019).

    Google Scholar 

  13. Chen, W. et al. Convergent selection of a WD40 protein that enhances grain yield in maize and rice. Science 375, eabg7985 (2022).

    Google Scholar 

  14. Yang, N. et al. Genome assembly of a tropical maize inbred line provides insights into structural variation and crop improvement. Nat. Genet. 51, 1052–1059 (2019).

    Google Scholar 

  15. Sun, Q. et al. A NAC-EXPANSIN module enhances maize kernel size by controlling nucellus elimination. Nat. Commun. 13, 5708 (2022).

    Google Scholar 

  16. Li, Y. X. et al. Cis-regulatory variation affecting gene expression contributes to the improvement of maize kernel size. Plant J. 111, 1595–1608 (2022).

    Google Scholar 

  17. Jin, M. et al. ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT. J. Integr. Plant Biol. 60, 465–480 (2018).

    Google Scholar 

  18. Su, H. et al. Identification of ZmNF-YC2 and its regulatory network for maize flowering time. J. Exp. Bot. 72, 7792–7807 (2021).

    Google Scholar 

  19. Liu, S. et al. Mapping regulatory variants controlling gene expression in drought response and tolerance in maize. Genome Biol. 21, 163 (2020).

    Google Scholar 

  20. Wang, X. et al. Genetic variation in ZmVPP1 contributes to drought tolerance in maize seedlings. Nat. Genet 48, 1233–1241 (2016).

    Google Scholar 

  21. Sun, X. et al. The role of transposon inverted repeats in balancing drought tolerance and yield-related traits in maize. Nat. Biotechnol. 41, 120–127 (2023).

    Google Scholar 

  22. Jiang, H. et al. Natural polymorphism of ZmICE1 contributes to amino acid metabolism that impacts cold tolerance in maize. Nat. Plants 8, 1176–1190 (2022).

    Google Scholar 

  23. Sun, G. et al. A role for heritable transcriptomic variation in maize adaptation to temperate environments. Genome Biol. 24, 55 (2023).

    Google Scholar 

  24. Rodriguez-Leal, D., Lemmon, Z. H., Man, J., Bartlett, M. E. & Lippman, Z. B. Engineering quantitative trait variation for crop improvement by genome editing. Cell 171, 470–480.e8 (2017).

    Google Scholar 

  25. Chen, K., Wang, Y., Zhang, R., Zhang, H. & Gao, C. CRISPR/Cas genome editing and precision plant breeding in agriculture. Annu Rev. Plant Biol. 70, 667–697 (2019).

    Google Scholar 

  26. Liu, L. et al. Enhancing grain-yield-related traits by CRISPR-Cas9 promoter editing of maize CLE genes. Nat. Plants 7, 287–294 (2021).

    Google Scholar 

  27. Wang, Y., Tang, Q., Pu, L., Zhang, H. & Li, X. CRISPR-Cas technology opens a new era for the creation of novel maize germplasms. Front. Plant Sci. 13, 1049803 (2022).

  28. Li, S. et al. Improving yield-related traits by editing the promoter of the heading date gene Ehd1 in rice. Theor. Appl Genet. 136, 239 (2023).

    Google Scholar 

  29. Xiao, Y. et al. Genome-wide dissection of the maize ear genetic architecture using multiple populations. N. Phytol. 210, 1095–1106 (2016).

    Google Scholar 

  30. Pan, Q. et al. Genome-wide recombination dynamics are associated with phenotypic variation in maize. N. Phytol. 210, 1083–1094 (2016).

    Google Scholar 

  31. Peng, Y. et al. Chromatin interaction maps reveal genetic regulation for quantitative traits in maize. Nat. Commun. 10, 2632 (2019).

    Google Scholar 

  32. Marand, A. P. et al. The genetic architecture of cell type-specific cis regulation in maize. Science 388, eads6601 (2025).

    Google Scholar 

  33. Chen, L. et al. Genome sequencing reveals evidence of adaptive variation in the genus Zea. Nat. Genet. 54, 1736–1745 (2022).

    Google Scholar 

  34. Ertiro, B. T. et al. Comparison of kompetitive Allele specific PCR (KASP) and genotyping by sequencing (GBS) for quality control analysis in maize. BMC Genomics 16, 908 (2015).

    Google Scholar 

  35. Frank, R. A., Leeper, F. J. & Luisi, B. F. Structure, mechanism and catalytic duality of thiamine-dependent enzymes. Cell Mol. Life Sci. 64, 892–905 (2007).

    Google Scholar 

  36. Li, J., Kim, Y.J. & Zhang, D. Source-to-sink transport of sugar and its role in male reproductive development. Genes 13, 1323 (2022).

  37. Li, M., Zhong, W., Yang, F. & Zhang, Z. Genetic and molecular mechanisms of quantitative trait loci controlling maize inflorescence architecture. Plant Cell Physiol. 59, 448–457 (2018).

    Google Scholar 

  38. Gerdes, S. et al. Plant B vitamin pathways and their compartmentation: a guide for the perplexed. J. Exp. Bot. 63, 5379–5395 (2012).

    Google Scholar 

  39. Woodward, J. B. et al. A maize thiamine auxotroph is defective in shoot meristem maintenance. Plant Cell 22, 3305–3317 (2010).

    Google Scholar 

  40. Wang, Y. et al. A spatial transcriptome map of the developing maize ear. Nat. Plants 10, 815–827 (2024).

    Google Scholar 

  41. Sun, Y. et al. Progressive meristem and single-cell transcriptomes reveal the regulatory mechanisms underlying maize inflorescence development and sex differentiation. Mol. Plant 17, 1019–1037 (2024).

    Google Scholar 

  42. Didangelos, T. et al. Efficacy and safety of the combination of palmitoylethanolamide, superoxide dismutase, alpha lipoic acid, vitamins B12, B1, B6, E, Mg, Zn and nicotinamide for 6 months in people with diabetic neuropathy. Nutrients 16, 3045 (2024).

  43. Nozaki, S. et al. Thiamine tetrahydrofurfuryl disulfide improves energy metabolism and physical performance during physical-fatigue loading in rats. Nutr. Res. 29, 867–872 (2009).

    Google Scholar 

  44. Frelin, O. et al. Identification of mitochondrial thiamin diphosphate carriers from Arabidopsis and maize. Funct. Integr. Genomics 12, 317–326 (2012).

    Google Scholar 

  45. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Google Scholar 

  46. Liu, H. et al. CRISPR-P 2.0: CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in Plants. Mol. Plant 10, 530–532 (2017).

    Google Scholar 

  47. Li, C. et al. RNA-guided Cas9 as an in vivo desired-target mutator in maize. Plant Biotechnol. J. 15, 1566–1576 (2017).

    Google Scholar 

  48. Liu, H. J. et al. High-throughput CRISPR/Cas9 mutagenesis streamlines trait gene identification in maize. Plant Cell 32, 1397–1413 (2020).

    Google Scholar 

  49. Rao, X., Huang, X., Zhou, Z. & Lin, X. An improvement of the 2ˆ(-delta delta CT) method for quantitative real-time polymerase chain reaction data analysis. Biostat. Bioinforma. Biomath. 3, 71–85 (2013).

    Google Scholar 

  50. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).

    Google Scholar 

  51. Lowe, K. et al. Rapid genotype “independent” Zea mays L. (maize) transformation via direct somatic embryogenesis. Vitr. Cell Dev. Biol. Plant 54, 240–252 (2018).

    Google Scholar 

  52. Yoo, S. D., Cho, Y. H. & Sheen, J. Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2, 1565–1572 (2007).

    Google Scholar 

  53. Huang, M. et al. Camouflage patterning in maize leaves results from a defect in porphobilinogen deaminase. Mol. Plant 2, 773–789 (2009).

    Google Scholar 

  54. Lee, B. L., Ong, H. Y. & Ong, C. N. Determination of thiamine and its phosphate esters by gradient-elution high-performance liquid chromatography. J. Chromatogr. 567, 71–80 (1991).

    Google Scholar 

  55. Zheng, H., Zhang, Q., Quan, J., Zheng, Q. & Xi, W. Determination of sugars, organic acids, aroma components, and carotenoids in grapefruit pulps. Food Chem. 205, 112–121 (2016).

    Google Scholar 

  56. Chen, W. et al. A novel integrated method for large-scale detection, identification, and quantification of widely targeted metabolites: application in the study of rice metabolomics. Mol. Plant 6, 1769–1780 (2013).

    Google Scholar 

  57. Salem, M. A., Jüppner, J., Bajdzienko, K. & Giavalisco, P. Protocol: a fast, comprehensive and reproducible one-step extraction method for the rapid preparation of polar and semi-polar metabolites, lipids, proteins, starch and cell wall polymers from a single sample. Plant Methods 12, 45 (2016).

    Google Scholar 

  58. Yan, S., Huang, W., Gao, J., Fu, H. & Liu, J. Comparative metabolomic analysis of seed metabolites associated with seed storability in rice (Oryza sativa L.) during natural aging. Plant Physiol. Biochem. 127, 590–598 (2018).

    Google Scholar 

  59. Ajjawi, I., Rodriguez Milla, M. A., Cushman, J. & Shintani, D. K. Thiamin pyrophosphokinase is required for thiamin cofactor activation in Arabidopsis. Plant Mol. Biol. 65, 151–162 (2007).

    Google Scholar 

  60. Rapala-Kozik, M., Gołda, A. & Kujda, M. Enzymes that control the thiamine diphosphate pool in plant tissues. Properties of thiamine pyrophosphokinase and thiamine-(di)phosphate phosphatase purified from Zea mays seedlings. Plant Physiol. Biochem. 47, 237–242 (2009).

    Google Scholar 

Download references