References
-
Weissleder, R. Molecular imaging in cancer. Science 312, 1168–1171 (2006).
-
Rubin, G. D. Computed tomography: revolutionizing the practice of medicine for 40 years. Radiology 273, S45–S74 (2014).
-
Withers, P. J. et al. X-ray computed tomography. Nat. Rev. Methods Primers 1, 18 (2021).
-
Terreno, E., Castelli, D. D., Viale, A. & Aime, S. Challenges for molecular magnetic resonance imaging. Chem. Rev. 110, 3019–3042 (2010).
-
Moser, E., Stadlbauer, A., Windischberger, C., Quick, H. H. & Ladd, M. E. Magnetic resonance imaging methodology. Eur. J. Nucl. Med. Mol. Imaging 36, 30–41 (2009).
-
Zhou, J. et al. Fluorescent diagnostic probes in neurodegenerative diseases. Adv. Mater. 32, 2001945 (2020).
-
Sharma, A. et al. Theranostic fluorescent probes. Chem. Rev. 124, 2699–2804 (2024).
-
Fujita, K. & Urano, Y. Activity-based fluorescence diagnostics for cancer. Chem. Rev. 124, 4021–4078 (2024).
-
Vahrmeijer, A. L., Hutteman, M., van der Vorst, J. R., van de Velde, C. J. H. & Frangioni, J. V. Image-guided cancer surgery using near-infrared fluorescence. Nat. Rev. Clin. Oncol. 10, 507–518 (2013).
-
Hernot, S., van Manen, L., Debie, P., Mieog, J. S. D. & Vahrmeijer, A. L. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol. 20, e354–e367 (2019).
-
Bakhtiar, N., Jaleel, F., Moosa, F. A., Qureshi, N. A. & Jawaid, M. Sentinel lymph node identification by blue dye in patients with breast carcinoma. Pak. J. Med. Sci. 32, 448–451 (2016).
-
Ishizawa, T. et al. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer 115, 2491–2504 (2009).
-
Croce, A. C. & Bottiroli, G. Autofluorescence spectroscopy and imaging: a tool for biomedical research and diagnosis. Eur. J. Histochem. 58, 320–337 (2014).
-
del Rosal, B. & Benayas, A. Strategies to overcome autofluorescence in nanoprobe-driven in vivo fluorescence imaging. Small Methods 2, 1800075 (2018).
-
Jiang, Y. & Pu, K. Molecular probes for autofluorescence-free optical imaging. Chem. Rev. 121, 13086–13131 (2021).
-
McCapra, F. Chemical mechanisms in bioluminescence. Acc. Chem. Res. 9, 201–208 (1976).
-
Badr, C. E. & Tannous, B. A. Bioluminescence imaging: progress and applications. Trends Biotechnol. 29, 624–633 (2011).
-
Blau, R., Shelef, O., Shabat, D. & Satchi-Fainaro, R. Chemiluminescent probes in cancer biology. Nat. Rev. Bioeng. 1, 648–664 (2023).
-
Dragulescu-Andrasi, A., Chan, C. T., De, A., Massoud, T. F. & Gambhir, S. S. Bioluminescence resonance energy transfer (BRET) imaging of protein–protein interactions within deep tissues of living subjects. Proc. Natl. Acad. Sci. USA 108, 12060–12065 (2011).
-
Buckley, S. M. K. et al. In vivo bioimaging with tissue-specific transcription factor activated luciferase reporters. Sci. Rep. 5, 11842 (2015).
-
Yang, M. et al. Chemiluminescence for bioimaging and therapeutics: recent advances and challenges. Chem. Soc. Rev. 49, 6800–6815 (2020).
-
Tannous, R. et al. Spirostrain-accelerated chemiexcitation of dioxetanes yields unprecedented detection sensitivity in chemiluminescence bioassays. ACS Cent. Sci. 10, 28–42 (2024).
-
David, M. et al. Chemiexcitation acceleration of 1,2-dioxetanes by spiro-fused six-member rings with electron-withdrawing motifs. Angew. Chem. Int. Ed. 63, e202410057 (2024).
-
Xiang, H., Cheng, J., Ma, X., Zhou, X. & Chruma, J. J. Near-infrared phosphorescence: materials and applications. Chem. Soc. Rev. 42, 6128–6185 (2013).
-
Zhao, W., He, Z. & Tang, B. Z. Room-temperature phosphorescence from organic aggregates. Nat. Rev. Mater. 5, 869–885 (2020).
-
Liu, Y., Li, C., Ren, Z., Yan, S. & Bryce, M. R. All-organic thermally activated delayed fluorescence materials for organic light-emitting diodes. Nat. Rev. Mater. 3, 18020 (2018).
-
Zhen, X. et al. Ultralong phosphorescence of water-soluble organic nanoparticles for in vivo afterglow imaging. Adv. Mater. 29, 1606665 (2017).
-
Kabe, R. & Adachi, C. Organic long persistent luminescence. Nature 550, 384–387 (2017).
-
Nishimura, N., Lin, Z., Jinnai, K., Kabe, R. & Adachi, C. Many exciplex systems exhibit organic long-persistent luminescence. Adv. Funct. Mater. 30, 2000795 (2020).
-
Chen, L.-J., Yang, C.-X. & Yan, X.-P. Liposome-coated persistent luminescence nanoparticles as luminescence trackable drug carrier for chemotherapy. Anal. Chem. 89, 6936–6939 (2017).
-
Sun, S.-K. et al. Turning solid into gel for high-efficient persistent luminescence-sensitized photodynamic therapy. Biomaterials 218, 119328 (2019).
-
le Masne de Chermont, Q. et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. USA 104, 9266–9271 (2007).
-
Liang, L. et al. Controlling persistent luminescence in nanocrystalline phosphors. Nat. Mater. 22, 289–304 (2023).
-
Miao, Q. et al. Molecular afterglow imaging with bright, biodegradable polymer nanoparticles. Nat. Biotechnol. 35, 1102–1110 (2017).
-
Palner, M., Pu, K., Shao, S. & Rao, J. Semiconducting polymer nanoparticles with persistent near-infrared luminescence for in vivo optical imaging. Angew. Chem. Int. Ed. 54, 11477–11480 (2015).
-
Wang, Y. et al. Cyclic amplification of the afterglow luminescent nanoreporter enables the prediction of anti-cancer efficiency. Angew. Chem. Int. Ed. 60, 19779–19789 (2021).
-
Liao, S. et al. A novel afterglow nanoreporter for monitoring cancer therapy. Theranostics 12, 6883–6897 (2022).
-
Zhen, X., Xie, C. & Pu, K. Temperature-correlated afterglow of a semiconducting polymer nanococktail for imaging-guided photothermal therapy. Angew. Chem. Int. Ed. 57, 3938–3942 (2018).
-
Lyu, Y. et al. Near-infrared afterglow semiconducting nano-polycomplexes for the multiplex differentiation of cancer exosomes. Angew. Chem. Int. Ed. 58, 4983–4987 (2019).
-
Jiang, Y. et al. A generic approach towards afterglow luminescent nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 10, 2064 (2019).
-
Ni, X. et al. Near-Infrared afterglow luminescent aggregation-induced emission dots with ultrahigh tumor-to-liver signal ratio for promoted image-guided cancer surgery. Nano Lett. 19, 318–330 (2019).
-
Liu, Y. et al. Significantly enhanced afterglow brightness via intramolecular energy transfer. ACS Mater. Lett. 3, 713–720 (2021).
-
Zheng, X. et al. Organic nanoparticles with persistent luminescence for in vivo afterglow imaging-guided photodynamic therapy. Chem. Eur. J. 27, 6911–6916 (2021).
-
Chen, W. et al. Near-Infrared afterglow luminescence of chlorin nanoparticles for ultrasensitive in vivo imaging. J. Am. Chem. Soc. 144, 6719–6726 (2022).
-
Duan, X. et al. Activatable persistent luminescence from porphyrin derivatives and supramolecular probes with imaging-modality transformable characteristics for improved biological applications. Angew. Chem. Int. Ed. 61, e202116174 (2022).
-
Zhu, J. et al. A self-sustaining near-infrared afterglow chemiluminophore for high-contrast activatable imaging. Angew. Chem. Int. Ed. 63, e202318545 (2024).
-
Yang, L. et al. A highly bright near-infrared afterglow luminophore for activatable ultrasensitive in vivo imaging. Angew. Chem. Int. Ed. 63, e202313117 (2024).
-
Wang, Y. et al. Enhancing fractionated cancer therapy: a triple-anthracene photosensitizer unleashes long-persistent photodynamic and luminous efficacy. J. Am. Chem. Soc. 146, 6252–6265 (2024).
-
Wang, Y. et al. In vivo ultrasound-induced luminescence molecular imaging. Nat. Photonics 18, 334–343 (2024).
-
Wang, Y. et al. Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives. Nat. Biomed. Eng. 9, 656–670 (2025).
-
Xu, C. et al. Nanoparticles with ultrasound-induced afterglow luminescence for tumour-specific theranostics. Nat. Biomed. Eng. 7, 298–312 (2023).
-
Huang, J. et al. Molecular radio afterglow probes for cancer radiodynamic theranostics. Nat. Mater. 22, 1421–1429 (2023).
-
Xu, C. et al. A cascade X-ray energy converting approach toward radio-afterglow cancer theranostics. Nat. Nanotechnol. 20, 286–295 (2024).
-
Wu, L. et al. H2S-activatable near-infrared afterglow luminescent probes for sensitive molecular imaging in vivo. Nat. Commun. 11, 446 (2020).
-
Anjong, T. F. et al. Multifunction-harnessed afterglow nanosensor for molecular imaging of acute kidney injury in vivo. Small 18, 2200245 (2022).
-
Chen, C. et al. Amplification of activated near-infrared afterglow luminescence by introducing twisted molecular geometry for understanding neutrophil-involved diseases. J. Am. Chem. Soc. 144, 3429–3441 (2022).
-
Liu, Y. et al. Ratiometric afterglow luminescent nanoplatform enables reliable quantification and molecular imaging. Nat. Commun. 13, 2216 (2022).
-
Gao, Z., Zhang, Y., Liu, Q. & Ding, D. Mechanism and design of organic afterglow luminescent probes for cancer theranostics. Med. Mat. 1, 27–39 (2024).
-
Shen, H. et al. Organic afterglow nanoparticles in bioapplications. Chem. Eur. J. 29, e202301209 (2023).
-
Wang, X. & Pu, K. Molecular substrates for the construction of afterglow imaging probes in disease diagnosis and treatment. Chem. Soc. Rev. 52, 4549–4566 (2023).
-
Li, Z., Liu, H. & Zhang, X.-B. Reactive oxygen species-mediated organic long-persistent luminophores light up biomedicine: from two-component separated nano-systems to integrated uni-luminophores. Chem. Soc. Rev. 53, 11207–11227 (2024).
-
Qu, R., Jiang, X. & Zhen, X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem. Soc. Rev. 53, 10970–11003 (2024).
-
Zhu, J., Zhao, L., An, W. & Miao, Q. Recent advances and design strategies for organic afterglow agents to enhance autofluorescence-free imaging performance. Chem. Soc. Rev. 54, 1429–1452 (2025).
-
Jiang, K. et al. Triple-mode emission of carbon dots: applications for advanced anti-counterfeiting. Angew. Chem. Int. Ed. 55, 7231–7235 (2016).
-
Alam, P. et al. Organic long-persistent luminescence from a single-component aggregate. J. Am. Chem. Soc. 144, 3050–3062 (2022).
-
Jinnai, K., Kabe, R., Lin, Z. & Adachi, C. Organic long-persistent luminescence stimulated by visible light in p-type systems based on organic photoredox catalyst dopants. Nat. Mater. 21, 338–344 (2022).
-
Li, W. et al. Organic long-persistent luminescence from a thermally activated delayed fluorescence compound. Adv. Mater. 32, 2003911 (2020).
-
Lin, C. et al. Charge trapping for controllable persistent luminescence in organics. Nat. Photonics 18, 350–356 (2024).
-
Li, Z. et al. Direct aqueous-phase synthesis of sub-10 nm “luminous pearls” with enhanced in vivo renewable near-infrared persistent luminescence. J. Am. Chem. Soc. 137, 5304–5307 (2015).
-
Lécuyer, T. et al. Chemically engineered persistent luminescence nanoprobes for bioimaging. Theranostics 6, 2488–2524 (2016).
-
Pei, P. et al. X-ray-activated persistent luminescence nanomaterials for NIR-II imaging. Nat. Nanotechnol. 16, 1011–1018 (2021).
-
Pham, T. C., Nguyen, V.-N., Choi, Y., Lee, S. & Yoon, J. Recent strategies to develop innovative photosensitizers for enhanced photodynamic therapy. Chem. Rev. 121, 13454–13619 (2021).
-
Chen, D. et al. Type I photosensitizers revitalizing photodynamic oncotherapy. Small 17, 2006742 (2021).
-
Xie, C., Zhen, X., Miao, Q., Lyu, Y. & Pu, K. Self-assembled semiconducting polymer nanoparticles for ultrasensitive near-infrared afterglow imaging of metastatic tumors. Adv. Mater. 30, 1801331 (2018).
-
Su, X. et al. Enhanced blue afterglow through molecular fusion for bio-applications. Angew. Chem. Int. Ed. 61, e202201630 (2022).
-
Cui, D., Xie, C., Li, J., Lyu, Y. & Pu, K. Semiconducting photosensitizer-incorporated copolymers as near-infrared afterglow nanoagents for tumor imaging. Adv. Healthc. Mater. 7, 1800329 (2018).
-
Xu, Y. et al. An aggregation-induced emission dye-powered afterglow luminogen for tumor imaging. Chem. Sci. 11, 419–428 (2020).
-
Ma, G. et al. Rechargeable afterglow nanotorches for in vivo tracing of cell-based microrobots. Angew. Chem. Int. Ed. 63, e202400658 (2024).
-
Yang, J. et al. Turn-on chemiluminescence probes and dual-amplification of signal for detection of amyloid beta species in vivo. Nat. Commun. 11, 4052 (2020).
-
Zhang, J. et al. In vivo three-dimensional brain imaging with chemiluminescence probes in Alzheimer’s disease models. Proc. Natl. Acad. Sci. USA 120, e2310131120 (2023).
-
Lei, L. et al. Noninvasive imaging of tumor glycolysis and chemotherapeutic resistance via de novo design of molecular afterglow scaffold. J. Am. Chem. Soc. 145, 24386–24400 (2023).
-
Zheng, G. et al. Photooxidation triggered ultralong afterglow in carbon nanodots. Nat. Commun. 15, 2365 (2024).
-
Gutkin, S. et al. Boosting chemiexcitation of phenoxy-1,2-dioxetanes through 7-norbornyl and homocubanyl spirofusion. JACS Au 4, 3558–3566 (2024).
-
Shelef, O. et al. Biocompatible flash chemiluminescent assay enabled by sterically hindered spiro-strained-oxetanyl-1,2-dioxetane. Chem. Eur. J. 30, e202402981 (2024).
-
Reguero, M., Bernardi, F., Bottoni, A., Olivucci, M. & Robb, M. A. Chemiluminescent decomposition of 1,2-dioxetanes: an MC-SCF/MP2 study with VB analysis. J. Am. Chem. Soc. 113, 1566–1572 (1991).
-
Vacher, M. et al. Chemi- and bioluminescence of cyclic peroxides. Chem. Rev. 118, 6927–6974 (2018).
-
Koo, J.-Y. & Schuster, G. B. Chemically initiated electron exchange luminescence. A new chemiluminescent reaction path for organic peroxides. J. Am. Chem. Soc. 99, 6107–6109 (1977).
-
Schuster, G. B. Chemiluminescence of organic peroxides. Conversion of ground-state reactants to excited-state products by the chemically initiated electron-exchange luminescence mechanism. Acc. Chem. Res. 12, 366–373 (1979).
-
Isobe, H., Takano, Y., Okumura, M., Kuramitsu, S. & Yamaguchi, K. Mechanistic insights in charge-transfer-induced luminescence of 1,2-dioxetanones with a substituent of low oxidation potential. J. Am. Chem. Soc. 127, 8667–8679 (2005).
-
Catalani, L. H. & Wilson, T. Electron transfer and chemiluminescence. Two inefficient systems: 1,4-dimethoxy-9,10-diphenylanthracene peroxide and diphenoyl peroxide. J. Am. Chem. Soc. 111, 2633–2639 (1989).
-
Matsumoto, M., Sakuma, T. & Watanabe, N. Synthesis of bicyclic dioxetanes bearing a 3-hydroxy-4-isoxazolylphenyl moiety: new CIEEL-active dioxetanes emitting light with remarkable high-efficiency in aqueous medium. Tetrahedron Lett. 43, 8955–8958 (2002).
-
Green, O. et al. Opening a gateway for chemiluminescence cell imaging: distinctive methodology for design of bright chemiluminescent dioxetane probes. ACS Cent. Sci. 3, 349–358 (2017).
-
Wu, L. et al. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 49, 5110–5139 (2020).
-
He, S., Xie, C., Jiang, Y. & Pu, K. An organic afterglow protheranostic nanoassembly. Adv. Mater. 31, 1902672 (2019).
-
Zhang, Y. et al. Molecular engineering of a self-sustaining modular afterglow scaffold for in vivo activatable imaging. Angew. Chem. Int. Ed. 64, e202500801 (2025).
-
Jares-Erijman, E. A. & Jovin, T. M. FRET imaging. Nat. Biotechnol. 21, 1387–1395 (2003).
-
Wang, C. & Li, Z. Molecular conformation and packing: their critical roles in the emission performance of mechanochromic fluorescence materials. Mater. Chem. Front. 1, 2174–2194 (2017).
-
Borisov, S. M. & Wolfbeis, O. S. Optical biosensors. Chem. Rev. 108, 423–461 (2008).
-
Mei, J., Leung, N. L. C., Kwok, R. T. K., Lam, J. W. Y. & Tang, B. Z. Aggregation-induced emission: together we shine, united we soar! Chem. Rev. 115, 11718–11940 (2015).
-
Xu, C. et al. Activatable sonoafterglow nanoprobes for T-cell imaging. Adv. Mater. 35, 2211651 (2023).
-
Niu, H. et al. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem. Soc. Rev. 52, 2322–2357 (2023).
-
Zeng, W. et al. An activatable afterglow/MRI bimodal nanoprobe with fast response to H₂S for in vivo imaging of acute hepatitis. Angew. Chem. Int. Ed. 61, e202111759 (2022).
-
Huang, W. et al. Ratiometric afterglow luminescent imaging of matrix metalloproteinase-2 activity via an energy diversion process. Angew. Chem. Int. Ed. 63, e202404244 (2024).
-
Yue, R. et al. Imaging-guided companion diagnostics in radiotherapy by monitoring APE1 activity with afterglow and MRI imaging. Nat. Commun. 15, 6349 (2024).
-
Samanta, P. K. & Misra, R. Intramolecular charge transfer for optical applications. J. Appl. Phys. 133, 020901 (2023).
-
Schaap, A. P. & Gagnon, S. D. Chemiluminescence from a phenoxide-substituted 1,2-dioxetane: a model for firefly bioluminescence. J. Am. Chem. Soc. 104, 3504–3506 (1982).
-
Wei, X. et al. Leveraging long-distance singlet-oxygen transfer for bienzyme-locked afterglow imaging of intratumoral granule enzymes. J. Am. Chem. Soc. 146, 17393–17403 (2024).
-
Shelef, O. et al. Enzymatic activity profiling using an ultrasensitive array of chemiluminescent probes for bacterial classification and characterization. J. Am. Chem. Soc. 146, 5263–5273 (2024).
-
Liu, P. et al. Mechanically triggered bright chemiluminescence from polymers by exploiting a synergy between masked 2-furylcarbinol mechanophores and 1,2-dioxetane chemiluminophores. J. Am. Chem. Soc. 146, 22151–22156 (2024).
-
Peukert, C. et al. Enzyme-activated, chemiluminescent siderophore-dioxetane probes enable the selective and highly sensitive detection of bacterial pathogens. Angew. Chem. Int. Ed. 61, e202201423 (2022).
-
Liu, J., Huang, J., Wei, X., Cheng, P. & Pu, K. Near-infrared chemiluminescence imaging of chemotherapy-induced peripheral neuropathy. Adv. Mater. 36, 2310605 (2024).
-
Skovsen, E., Snyder, J. W., Lambert, J. D. C. & Ogilby, P. R. Lifetime and diffusion of singlet oxygen in a cell. J. Phys. Chem. B. 109, 8570–8573 (2005).
-
Midden, W. R. & Wang, S. Y. Singlet oxygen generation for solution kinetics: clean and simple. J. Am. Chem. Soc. 105, 4129–4135 (1983).
-
Jiang, Y. et al. Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging. Nat. Commun. 15, 2124 (2024).
-
Cheng, P. & Pu, K. Enzyme-responsive, multi-lock optical probes for molecular imaging and disease theranostics. Chem. Soc. Rev. 53, 10171–10188 (2024).
-
Zhang, P. et al. And-logic strategy for accurate analysis of Alzheimer’s disease via fluorescent probe lighted up by two specific biomarkers. Anal. Chem. 93, 11337–11345 (2021).
-
Zhou, H. et al. A tumor-microenvironment-activatable molecular pro-theranostic agent for photodynamic and immunotherapy of cancer. Adv. Mater. 35, 2211485 (2023).
-
Wei, P. et al. Deformylation reaction-based probe for in vivo imaging of HOCl. Chem. Sci. 9, 495–501 (2018).
-
Wu, R. et al. Ultrasound-activated NIR chemiluminescence for deep tissue and tumor foci imaging. Anal. Chem. 95, 11219–11226 (2023).
-
Mitragotri, S. Healing sound: the use of ultrasound in drug delivery and other therapeutic applications. Nat. Rev. Drug Discov. 4, 255–260 (2005).
-
Martinoli, C. et al. Sonography of entrapment neuropathies in the upper limb (wrist excluded). J. Clin. Ultrasound. 32, 438–450 (2004).
-
de Almeida e Borges, V. F., Diniz, A. L. D., Cotrim, H. P., Rocha, H. L. O. G. & Andrade, N. B. Sonographic hepatorenal ratio: a noninvasive method to diagnose nonalcoholic steatosis. J. Clin. Ultrasound. 41, 18–25 (2013).
-
Goddi, A. et al. Vector flow imaging techniques: an innovative ultrasonographic technique for the study of blood flow. J. Clin. Ultrasound. 45, 582–588 (2017).
-
Flannigan, D. J. & Suslick, K. S. Plasma formation and temperature measurement during single-bubble cavitation. Nature 434, 52–55 (2005).
-
Wang, Y. et al. Ultrasonic activation of inert poly(tetrafluoroethylene) enables piezocatalytic generation of reactive oxygen species. Nat. Commun. 12, 3508 (2021).
-
Momose, A. X-ray phase imaging reaching clinical uses. Phys. Med. 79, 93–102 (2020).
-
Kotas, M. E. & Medzhitov, R. Homeostasis, inflammation, and disease susceptibility. Cell 160, 816–827 (2015).
-
Nguyen, L. N. M. et al. The mechanisms of nanoparticle delivery to solid tumours. Nat. Rev. Bioeng. 2, 201–213 (2024).
-
Lyle, A. N. & Taylor, W. R. The pathophysiological basis of vascular disease. Lab. Invest. 99, 284–289 (2019).
-
Szabó, C. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Discov. 6, 917–935 (2007).
-
Kass, G. E. N. Mitochondrial involvement in drug-induced hepatic injury. Chem. Biol. Interact. 163, 145–159 (2006).
-
Pashayan, N. & Pharoah, P. D. P. The challenge of early detection in cancer. Science 368, 589–590 (2020).
-
Richards, M. A., Westcombe, A. M., Love, S. B., Littlejohns, P. & Ramirez, A. J. Influence of delay on survival in patients with breast cancer: a systematic review. Lancet 353, 1119–1126 (1999).
-
Richards, M. A., Hiom, S. & Hamilton, W. Diagnosing cancer earlier: what progress is being made? Br. J. Cancer 128, 441–442 (2023).
-
Andrade, R. J. et al. Drug-induced liver injury. Nat. Rev. Dis. Primers 5, 58 (2019).
-
Wang, X. & Chen, X. Clinical characteristics of 162 patients with drug-induced liver and/or kidney injury. BioMed. Res. Int. 2020, 3930921 (2020).
-
Ramachandran, A. & Jaeschke, H. Acetaminophen hepatotoxicity. Semin. Liver Dis. 39, 221–234 (2019).
-
Wang, S. et al. Fluorescence imaging of pathophysiological microenvironments. Chem. Soc. Rev. 50, 8887–8902 (2021).
-
Kolaczkowska, E. & Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13, 159–175 (2013).
-
Chen, S. et al. Macrophages in immunoregulation and therapeutics. Sig. Transduct. Target. Ther. 8, 207 (2023).
-
Szabó, C., Ischiropoulos, H. & Radi, R. Peroxynitrite: biochemistry, pathophysiology and development of therapeutics. Nat. Rev. Drug Discov. 6, 662–680 (2007).
-
Waldman, A. D., Fritz, J. M. & Lenardo, M. J. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat. Rev. Immunol. 20, 651–668 (2020).
-
Lord, S. J., Rajotte, R. V., Korbutt, G. S. & Bleackley, R. C. Granzyme B: a natural born killer. Immunol. Rev. 193, 31–38 (2003).
-
Gao, Z. et al. An activatable near-infrared afterglow theranostic prodrug with self-sustainable magnification effect of immunogenic cell death. Angew. Chem. Int. Ed. 61, e202209793 (2022).
-
Hao, L. et al. Engineering light-initiated afterglow lateral flow immunoassay for infectious disease diagnostics. Biosens. Bioelectron. 212, 114411 (2022).
-
Chen, W. et al. O₂-relevant afterglow luminescence of chlorin nanoparticles for discriminative detection and isotopic analysis of H₂O and D₂O. Anal. Chem. 95, 5340–5345 (2023).
-
Yuan, H. et al. Afterglow amplification for fast and sensitive detection of porphyria in whole blood. ACS Appl. Mater. 13, 27991–27998 (2021).
-
Li, X., Lovell, J. F., Yoon, J. & Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 17, 657–674 (2020).
-
Baskaran, R., Lee, J. & Yang, S.-G. Clinical development of photodynamic agents and therapeutic applications. Biomater. Res. 22, 25 (2018).
-
Dougherty, T. J. et al. Photoradiation therapy for the treatment of malignant tumors. Cancer Res. 38, 2628–2635 (1978).
-
Agostinis, P. et al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61, 250–281 (2011).
-
Ran, C. & Pu, K. Molecularly generated light and its biomedical applications. Angew. Chem. Int. Ed. 63, e202314468 (2024).
-
Xu, X. G., Bednarz, B. & Paganetti, H. A review of dosimetry studies on external-beam radiation treatment with respect to second cancer induction. Phys. Med. Biol. 53, R193–R241 (2008).
-
He, S., Song, J., Qu, J. & Cheng, Z. Crucial breakthrough of second near-infrared biological window fluorophores: design and synthesis toward multimodal imaging and theranostics. Chem. Soc. Rev. 47, 4258–4278 (2018).
-
Wen, K. et al. Achieving efficient NIR-II type-I photosensitizers for photodynamic/photothermal therapy upon regulating chalcogen elements. Adv. Mater. 34, 2108146 (2022).
-
Wang, S. et al. Beyond traditional light: NIR-II light-activated photosensitizers for cancer therapy. J. Mater. Chem. B. 11, 8315–8326 (2023).
-
Wang, X. et al. Organic phosphorescent nanoscintillator for low-dose X-ray-induced photodynamic therapy. Nat. Commun. 13, 5091 (2022).
-
Wang, X. et al. Organic phosphors with bright triplet excitons for efficient X-ray-excited luminescence. Nat. Photonics 15, 187–192 (2021).
-
Gan, N. et al. Organic phosphorescent scintillation from copolymers by X-ray irradiation. Nat. Commun. 13, 3995 (2022).
-
Shi, L. et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 13, 10748–10764 (2021).
-
Harris, J. M. & Chess, R. B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2, 214–221 (2003).
-
Gao, Y., Joshi, M., Zhao, Z. & Mitragotri, S. PEGylated therapeutics in the clinic. Bioeng. Transl. Med. 9, e10600 (2024).
-
Obaid, G. et al. Engineering photodynamics for treatment, priming and imaging. Nat. Rev. Bioeng. 2, 752–769 (2024).
-
Kennedy, J. C., Pottier, R. H. & Pross, D. C. Photodynamic therapy with endogenous protoporphyrin: IX: basic principles and present clinical experience. J. Photoch. Photobio. B. 6, 143–148 (1990).
-
Liu, J., Guo, M. & Chen, C. Nano-bio interactions: a major principle in the dynamic biological processes of nano-assemblies. Adv. Drug Deliv. Rev. 186, 114318 (2022).
-
Stater, E. P., Sonay, A. Y., Hart, C. & Grimm, J. The ancillary effects of nanoparticles and their implications for nanomedicine. Nat. Nanotechnol. 16, 1180–1194 (2021).
-
Poon, W. et al. Elimination pathways of nanoparticles. ACS Nano 13, 5785–5798 (2019).
-
Llop, J. & Lammers, T. Nanoparticles for cancer diagnosis, radionuclide therapy and theranostics. ACS Nano 15, 16974–16981 (2021).
-
Du, B., Yu, M. & Zheng, J. Transport and interactions of nanoparticles in the kidneys. Nat. Rev. Mater. 3, 358–374 (2018).
-
Zhong, L. et al. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Sig. Transduct. Target. Ther. 6, 201 (2021).
-
Li, Z. et al. Superoxide anion-mediated afterglow mechanism-based water-soluble zwitterion dye achieving renal-failure mice detection. J. Am. Chem. Soc. 145, 26736–26746 (2023).
-
Liu, Y., Teng, L., Lou, X.-F., Zhang, X.-B. & Song, G. “Four-in-one” design of a hemicyanine-based modular scaffold for high-contrast activatable molecular afterglow imaging. J. Am. Chem. Soc. 145, 5134–5144 (2023).
-
Mestas, J. & Hughes, C. C. W. Of mice and not men: differences between mouse and human immunology. J. Immunol. 172, 2731–2738 (2004).
-
Salehi Farid, A. et al. CD45-PET is a robust, non-invasive tool for imaging inflammation. Nature 639, 214–224 (2025).
-
Woo, X. Y. et al. Conservation of copy number profiles during engraftment and passaging of patient-derived cancer xenografts. Nat. Genet. 53, 86–99 (2021).
-
Allen, T. M. et al. Humanized immune system mouse models: progress, challenges and opportunities. Nat. Immunol. 20, 770–774 (2019).
-
Shultz, L. D., Ishikawa, F. & Greiner, D. L. Humanized mice in translational biomedical research. Nat. Rev. Immunol. 7, 118–130 (2007).
-
Wang, X., Yuan, W., Xu, M., Su, X. & Li, F. Visualization of acute inflammation through a macrophage-camouflaged afterglow nanocomplex. ACS Appl. Mater. 14, 259–267 (2022).
-
Lin, Y. et al. Highly photoreactive semiconducting polymers with cascade intramolecular singlet oxygen and energy transfer for cancer-specific afterglow theranostics. J. Am. Chem. Soc. 147, 2597–2606 (2025).
-
Pei, Y. et al. Chemical energy lights up Europium-based ultra-bright afterglow for bioanalysis application. Angew. Chem. Int. Ed. 64, e202423791 (2025).
-
Agrahari, V. & Hiremath, P. Challenges associated and approaches for successful translation of nanomedicines into commercial products. Nanomedicine 12, 819–823 (2017).
-
Ildikó, C., Ruba, I., Orsolya, J.-L. & Edina, P. Regulatory considerations, challenges and risk-based approach in nanomedicine development. Curr. Med. Chem. 28, 7461–7476 (2021).
-
Verbeek, F. P. et al. Intraoperative near infrared fluorescence guided identification of the ureters using low dose methylene blue: a first in human experience. J. Urol. 190, 574–579 (2013).
-
Shakeri-Zadeh, A. & Bulte, J. W. M. Imaging-guided precision hyperthermia with magnetic nanoparticles. Nat. Rev. Bioeng. 3, 245–260 (2025).
-
FDA. Drug products, including biological products, that contain nanomaterials guidance for industry; https://www.fda.gov/media/157812/download (2022).
-
Hong, G., Antaris, A. L. & Dai, H. Near-infrared fluorophores for biomedical imaging. Nat. Biomed. Eng. 1, 0010 (2017).
