Han, X. et al. Landscape of human organoids: ideal model in clinics and research. Innovation 5, 100620 (2024).
Choudhury, D., Ashok, A. & Naing, M. W. Commercialization of organoids. Trends Mol. Med. 26, 245–249 (2020).
Homan, K. A. Industry adoption of organoids and organs-on-chip technology: toward a paradox of choice. Adv. Biol. 7, 2200334 (2023).
Takebe, T., Wells, J. M., Helmrath, M. A. & Zorn, A. M. Organoid center strategies for accelerating clinical translation. Cell Stem Cell 22, 806–809 (2018).
Lee, H., Im, J. S., Choi, D. B. & Woo, D.-H. Trends in the global organoid technology and industry: from organogenesis in a dish to the commercialization of organoids. Organoid 1, e11 (2021).
Vandereyken, K., Sifrim, A., Thienpont, B. & Voet, T. Methods and applications for single-cell and spatial multi-omics. Nat. Rev. Genet. 24, 494–515 (2023).
Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).
Blokzijl, F. et al. Tissue-specific mutation accumulation in human adult stem cells during life. Nature 538, 260–264 (2016).
Jager, M. et al. Measuring mutation accumulation in single human adult stem cells by whole-genome sequencing of organoid cultures. Nat. Protoc. 13, 59–78 (2018).
Assou, S. et al. Recurrent genetic abnormalities in human pluripotent stem cells: definition and routine detection in culture supernatant by targeted droplet digital PCR. Stem Cell Rep. 14, 1–8 (2020).
Youk, J., Kwon, H. W., Kim, R. & Ju, Y. S. Dissecting single-cell genomes through the clonal organoid technique. Exp. Mol. Med. 53, 1503–1511 (2021).
Farshadi, E. A. et al. Tumor organoids improve mutation detection of pancreatic ductal adenocarcinoma. Sci. Rep. 14, 25468 (2024).
Yin, Y., Liu, P.-Y., Shi, Y. & Li, P. in Reviews of Physiology, Biochemistry and Pharmacology Vol. 179 (ed. Pedersen, S. H. F.) 189–210 (Springer, 2021).
Bues, J. et al. Deterministic scRNA-seq captures variation in intestinal crypt and organoid composition. Nat. Methods 19, 323–330 (2022).
Rosenberg, A. B. et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 360, 176–182 (2018).
Camp, J. G. et al. Multilineage communication regulates human liver bud development from pluripotency. Nature 546, 533–538 (2017).
Guan, Y. et al. A human multi-lineage hepatic organoid model for liver fibrosis. Nat. Commun. 12, 6138 (2021).
Hess, A. et al. Single-cell transcriptomics stratifies organoid models of metabolic dysfunction-associated steatotic liver disease. EMBO J. 42, e113898 (2023).
Velasco, S. et al. Individual brain organoids reproducibly form cell diversity of the human cerebral cortex. Nature 570, 523–527 (2019).
Fiorenzano, A. et al. Single-cell transcriptomics captures features of human midbrain development and dopamine neuron diversity in brain organoids. Nat. Commun. 12, 7302 (2021).
Pollen, A. A. et al. Establishing cerebral organoids as models of human-specific brain evolution. Cell 176, 743–756.e17 (2019).
Grün, D. et al. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525, 251–255 (2015).
Li, C. et al. Single-cell brain organoid screening identifies developmental defects in autism. Nature 621, 373–380 (2023).
Ziffra, R. S. et al. Single-cell epigenomics reveals mechanisms of human cortical development. Nature 598, 205–213 (2021).
Fleck, J. S. et al. Resolving organoid brain region identities by mapping single-cell genomic data to reference atlases. Cell Stem Cell 28, 1148–1159.e8 (2021).
Kanton, S. et al. Organoid single-cell genomic atlas uncovers human-specific features of brain development. Nature 574, 418–422 (2019). This study generates a single-cell genomic atlas of cerebral organoids from humans and non-human primates, demonstrating that human cortical development progresses more slowly and involves distinct gene expression and chromatin accessibility programs.
Zenk, F. et al. Single-cell epigenomic reconstruction of developmental trajectories from pluripotency in human neural organoid systems. Nat. Neurosci. 27, 1376–1386 (2024).
Chen, C. et al. Trans-omic profiling uncovers molecular controls of early human cerebral organoid formation. Cell Rep. 43, 114219 (2024).
Sidhaye, J. et al. Integrated transcriptome and proteome analysis reveals posttranscriptional regulation of ribosomal genes in human brain organoids. eLife 12, e85135 (2023).
Lassé, M. et al. An integrated organoid omics map extends modeling potential of kidney disease. Nat. Commun. 14, 4903 (2023).
Forero, A. et al. Extracellular vesicle-mediated trafficking of molecular cues during human brain development. Cell Rep. 43, 114755 (2024).
Beumer, J. et al. High-resolution mRNA and secretome atlas of human enteroendocrine cells. Cell 181, 1291–1306.e19 (2020).
Michielin, F. et al. The microfluidic environment reveals a hidden role of self-organizing extracellular matrix in hepatic commitment and organoid formation of hiPSCs. Cell Rep. 33, 108453 (2020).
Dong, Y. et al. Integrated microRNA and secretome analysis of human endometrial organoids reveal the miR-3194-5p/aquaporin/S100A9 module in regulating trophoblast functions. Mol. Cell. Proteom. 22, 100526 (2023).
Dijkstra, J. J. et al. Multiomics of colorectal cancer organoids reveals putative mediators of cancer progression resulting from SMAD4 inactivation. J. Proteome Res. 22, 138–151 (2023).
Bressan, D., Battistoni, G. & Hannon, G. J. The dawn of spatial omics. Science 381, eabq4964 (2023).
Garcia-Alonso, L. et al. Mapping the temporal and spatial dynamics of the human endometrium in vivo and in vitro. Nat. Genet. 53, 1698–1711 (2021).
Yu, Q. et al. Charting human development using a multi-endodermal organ atlas and organoid models. Cell 184, 3281–3298.e22 (2021).
Wahle, P. et al. Multimodal spatiotemporal phenotyping of human retinal organoid development. Nat. Biotechnol. 41, 1765–1775 (2023). This study builds a multimodal atlas of human retinal organoids, integrating imaging and single-cell genomics to map development and gene regulation.
Passaro, A. P. & Stice, S. L. Electrophysiological analysis of brain organoids: current approaches and advancements. Front. Neurosci. 14, 622137 (2021).
Bardy, C. et al. Predicting the functional states of human iPSC-derived neurons with single-cell RNA-seq and electrophysiology. Mol. Psychiatry 21, 1573–1588 (2016).
Kornreich, B. G. The patch clamp technique: principles and technical considerations. J. Vet. Cardiol. 9, 25–37 (2007).
Giandomenico, S. L. et al. Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat. Neurosci. 22, 669–679 (2019).
Spira, M. E. & Hai, A. Multi-electrode array technologies for neuroscience and cardiology. Nat. Nanotechnol. 8, 83–94 (2013).
O’Leary, G. et al. OpenMEA: open-source microelectrode array platform for bioelectronic interfacing. Preprint at bioRxiv https://doi.org/10.1101/2022.11.11.516234 (2022).
Trujillo, C. A. et al. Complex oscillatory saves emerging from cortical organoids model early human brain network development. Cell Stem Cell 25, 558–569.e7 (2019).
Fair, S. R. et al. Electrophysiological maturation of cerebral organoids correlates with dynamic morphological and cellular development. Stem Cell Rep. 15, 855–868 (2020).
Berdondini, L. et al. Active pixel sensor array for high spatio-temporal resolution electrophysiological recordings from single cell to large scale neuronal networks. Lab Chip 9, 2644–2651 (2009).
Sharf, T. et al. Functional neuronal circuitry and oscillatory dynamics in human brain organoids. Nat. Commun. 13, 4403 (2022).
Suzuki, I. et al. Large-area field potential imaging having single neuron resolution using 236 880 electrodes CMOS-MEA technology. Adv. Sci. 10, 2207732 (2023).
Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).
Abbott, J. et al. CMOS nanoelectrode array for all-electrical intracellular electrophysiological imaging. Nat. Nanotechnol. 12, 460–466 (2017).
Soscia, D. A. et al. A flexible 3-dimensional microelectrode array for in vitro brain models. Lab Chip 20, 901–911 (2020).
Heuschkel, M. O., Fejtl, M., Raggenbass, M., Bertrand, D. & Renaud, P. A three-dimensional multi-electrode array for multi-site stimulation and recording in acute brain slices. J. Neurosci. Methods 114, 135–148 (2002).
Quadrato, G. et al. Cell diversity and network dynamics in photosensitive human brain organoids. Nature 545, 48–53 (2017).
Shin, H. et al. 3D high-density microelectrode array with optical stimulation and drug delivery for investigating neural circuit dynamics. Nat. Commun. 12, 492 (2021).
Kim, M. et al. Multimodal characterization of cardiac organoids using integrations of pressure-sensitive transistor arrays with three-dimensional liquid metal electrodes. Nano Lett. 22, 7892–7901 (2022).
Kim, E. et al. Magnetically reshapable 3D multi-electrode arrays of liquid metals for electrophysiological analysis of brain organoids. Nat. Commun. 16, 2011 (2025).
Chen, R., Canales, A. & Anikeeva, P. Neural recording and modulation technologies. Nat. Rev. Mater. 2, 16093 (2017).
Shoffstall, A. J. et al. A mosquito inspired strategy to implant microprobes into the brain. Sci. Rep. 8, 122 (2018).
Fu, T.-M. et al. Stable long-term chronic brain mapping at the single-neuron level. Nat. Methods 13, 875–882 (2016).
Park, S. et al. Adaptive and multifunctional hydrogel hybrid probes for long-term sensing and modulation of neural activity. Nat. Commun. 12, 3435 (2021).
Jeon, W. et al. Structurally aligned multifunctional neural probe (SAMP) using forest-drawn CNT sheet onto thermally drawn polymer fiber for long-term in vivo operation. Adv. Mater. 36, 2313625 (2024).
Li, Q. et al. Cyborg organoids: implantation of nanoelectronics via organogenesis for tissue-wide electrophysiology. Nano Lett. 19, 5781–5789 (2019).
Le Floch, P. et al. Stretchable mesh nanoelectronics for 3D single-cell chronic electrophysiology from developing brain organoids. Adv. Mater. 34, 2106829 (2022).
Xue, Z. & Zhao, J. Bioelectric interface technologies in cells and organoids. Adv. Mater. Interfaces 10, 2300550 (2023).
Park, Y. et al. Three-dimensional, multifunctional neural interfaces for cortical spheroids and engineered assembloids. Sci. Adv. 7, eabf9153 (2021). This study develops pliable 3D bioelectronic frameworks that envelop cortical spheroids and assembloids, integrating electrical, optical, thermal and chemical interfaces for multimodal monitoring, and control of neural activity across their surfaces.
Fullenkamp, D. E. et al. Simultaneous electromechanical monitoring in engineered heart tissues using a mesoscale framework. Sci. Adv. 10, eado7089 (2024).
Kalmykov, A. et al. Organ-on-e-chip: three-dimensional self-rolled biosensor array for electrical interrogations of human electrogenic spheroids. Sci. Adv. 5, eaax0729 (2019).
Kalmykov, A. et al. Bioelectrical interfaces with cortical spheroids in three-dimensions. J. Neural Eng. 18, 055005 (2021).
Huang, Q. et al. Shell microelectrode arrays (MEAs) for brain organoids. Sci. Adv. 8, eabq5031 (2022).
Yang, X. et al. Kirigami electronics for long-term electrophysiological recording of human neural organoids and assembloids. Nat. Biotechnol. 42, 1836–1843 (2024). This study presents kirigami electronics, a flexible 3D mesh that envelops neural organoids for long-term (up to 120 days) electrophysiological recording and functional mapping in organoids and assembloids.
Wu, Y. et al. Three-dimensional liquid metal-based neuro-interfaces for human hippocampal organoids. Nat. Commun. 15, 4047 (2024).
Dahl-Jensen, S. & Grapin-Botton, A. The physics of organoids: a biophysical approach to understanding organogenesis. Development 144, 946–951 (2017).
Mammoto, T. & Ingber, D. E. Mechanical control of tissue and organ development. Development 137, 1407–1420 (2010).
Pin, C. et al. An individual based computational model of intestinal crypt fission and its application to predicting unrestrictive growth of the intestinal epithelium. Integr. Biol. 7, 213–228 (2015).
Eiraku, M., Adachi, T. & Sasai, Y. Relaxation-expansion model for self-driven retinal morphogenesis: a hypothesis from the perspective of biosystems dynamics at the multi-cellular level. BioEssays 34, 17–25 (2012).
Ouchi, R. et al. Modeling steatohepatitis in humans with pluripotent stem cell-derived organoids. Cell Metab. 30, 374–384.e6 (2019).
Kobayashi, N. et al. Stiffness distribution analysis in indentation depth direction reveals clear mechanical features of cells and organoids by using AFM. Appl. Phys. Express 13, 097001 (2020).
Jowett, G. M. et al. ILC1 drive intestinal epithelial and matrix remodelling. Nat. Mater. 20, 250–259 (2021).
Nerger, B. A. et al. 3D hydrogel encapsulation regulates nephrogenesis in kidney organoids. Adv. Mater. 36, 2308325 (2024).
Pérez-González, C. et al. Mechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration. Nat. Cell Biol. 23, 745–757 (2021). This study uses traction force microscopy to show that intestinal organoid crypt folding is driven by apical pushing in stem cell zones and basal pulling in transit-amplifying zones, guided by actomyosin tension gradients.
Yang, Q. et al. Cell fate coordinates mechano-osmotic forces in intestinal crypt formation. Nat. Cell Biol. 23, 733–744 (2021).
Lyu, Q. et al. A soft and ultrasensitive force sensing diaphragm for probing cardiac organoids instantaneously and wirelessly. Nat. Commun. 13, 7259 (2022).
Yin, J. et al. Real-time electro-mechanical profiling of dynamically beating human cardiac organoids by coupling resistive skins with microelectrode arrays. Biosens. Bioelectron. 267, 116752 (2024).
Kim, W.-S. et al. Magneto-acoustic protein nanostructures for non-invasive imaging of tissue mechanics in vivo. Nat. Mater. 23, 290–300 (2024). This study develops magneto-gas vesicles, gas vesicle proteins functionalized with magnetic nanoparticles, and demonstrates their use in ultrasound imaging to noninvasively quantify fibrotic organoid stiffness and monitor fibrosis in vivo.
Dolega, M. E. et al. Cell-like pressure sensors reveal increase of mechanical stress towards the core of multicellular spheroids under compression. Nat. Commun. 8, 14056 (2017).
Calò, A. et al. Spatial mapping of the collagen distribution in human and mouse tissues by force volume atomic force microscopy. Sci. Rep. 10, 15664 (2020).
Xiao, R., Zhang, Y. & Li, M. Automated high-throughput atomic force microscopy single-cell nanomechanical assay enabled by deep learning-based optical image recognition. Nano Lett. 24, 12323–12332 (2024).
Price, S. et al. A suspension technique for efficient large-scale cancer organoid culturing and perturbation screens. Sci. Rep. 12, 5571 (2022).
Andolfi, L. et al. Planar AFM macro-probes to study the biomechanical properties of large cells and 3D cell spheroids. Acta Biomater. 94, 505–513 (2019).
Ryu, H. et al. Transparent, compliant 3D mesostructures for precise evaluation of mechanical characteristics of organoids. Adv. Mater. 33, 2100026 (2021).
Dembo, M. & Wang, Y.-L. Stresses at the cell-to-substrate interface during locomotion of fibroblasts. Biophys. J. 76, 2307–2316 (1999).
Polacheck, W. J. & Chen, C. S. Measuring cell-generated forces: a guide to the available tools. Nat. Methods 13, 415–423 (2016).
Broguiere, N. et al. Growth of epithelial organoids in a defined hydrogel. Adv. Mater. 30, 1801621 (2018).
Lee, W. et al. Dispersible hydrogel force sensors reveal patterns of solid mechanical stress in multicellular spheroid cultures. Nat. Commun. 10, 144 (2019).
Campàs, O. et al. Quantifying cell-generated mechanical forces within living embryonic tissues. Nat. Methods 11, 183–189 (2014).
Rios, A. C. & Clevers, H. Imaging organoids: a bright future ahead. Nat. Methods 15, 24–26 (2018).
Fei, K., Zhang, J., Yuan, J. & Xiao, P. Present application and perspectives of organoid imaging technology. Bioengineering 9, 121 (2022).
Luddi, A. et al. Organoids of human endometrium: a powerful in vitro model for the endometrium-embryo cross-talk at the implantation site. Cells 9, 1121 (2020).
Zhou, J. et al. Infection of bat and human intestinal organoids by SARS-CoV-2. Nat. Med. 26, 1077–1083 (2020).
Luo, L. Architectures of neuronal circuits. Science 373, eabg7285 (2021).
Endo, M., Maruoka, H. & Okabe, S. Advanced technologies for local neural circuits in the cerebral cortex. Front. Neuroanat. 15, 757499 (2021).
Zheng, Z. et al. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174, 730–743.e22 (2018).
Hoffmann, P. C. et al. Electron cryo-tomography reveals the subcellular architecture of growing axons in human brain organoids. eLife 10, e70269 (2021).
Jacob, F. et al. A patient-derived glioblastoma organoid model and biobank recapitulates inter- and intra-tumoral heterogeneity. Cell 180, 188–204.e22 (2020).
Trevino, A. E. et al. Chromatin accessibility dynamics in a model of human forebrain development. Science 367, eaay1645 (2020).
Zhong, X. et al. Generation of three-dimensional retinal tissue with functional photoreceptors from human iPSCs. Nat. Commun. 5, 4047 (2014).
McKinley, K. L. et al. Cellular aspect ratio and cell division mechanics underlie the patterning of cell progeny in diverse mammalian epithelia. eLife 7, e36739 (2018).
Cho, A.-N. et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids. Nat. Commun. 12, 4730 (2021).
Okkelman, I. A., Dmitriev, R. I., Foley, T. & Papkovsky, D. B. Use of fluorescence lifetime imaging microscopy (FLIM) as a timer of cell cycle S phase. PLoS ONE 11, e0167385 (2016).
Okkelman, I. A., Foley, T., Papkovsky, D. B. & Dmitriev, R. I. Live cell imaging of mouse intestinal organoids reveals heterogeneity in their oxygenation. Biomaterials 146, 86–96 (2017).
Dekkers, J. F. et al. High-resolution 3D imaging of fixed and cleared organoids. Nat. Protoc. 14, 1756–1771 (2019).
Patil-Takbhate, B., Tripathy, S. & Shakila, H. A narrative review on confocal laser scanning microscopy: Principle, applications, advancements and challenges. J. Clin. Diagn. Res. 18, KE07–KE11 (2024).
Zhang, Q. et al. Adaptive optics for optical microscopy. Biomed. Opt. Express 14, 1732–1756 (2023).
Elliott, A. D. Confocal microscopy: principles and modern practices. Curr. Protoc. Cytom. 92, e68 (2020).
Stehbens, S., Pemble, H., Murrow, L. & Wittmann, T. Imaging intracellular protein dynamics by spinning disk confocal microscopy. Methods Enzymol. 504, 293–313 (2012).
Oreopoulos, J., Berman, R. & Browne, M. in Methods in Cell Biology, Vol. 123 (eds Waters, J. C. & Wittman, T.) 153–175 (Academic Press, 2014).
Lukonin, I. et al. Phenotypic landscape of intestinal organoid regeneration. Nature 586, 275–280 (2020).
Chen, Y. et al. Low-cost and scalable projected light-sheet microscopy for the high-resolution imaging of cleared tissue and living samples. Nat. Biomed. Eng. 8, 1109–1123 (2024).
Hof, L. et al. Long-term live imaging and multiscale analysis identify heterogeneity and core principles of epithelial organoid morphogenesis. BMC Biol. 19, 37 (2021).
de Medeiros, G. et al. Multiscale light-sheet organoid imaging framework. Nat. Commun. 13, 4864 (2022).
Richardson, D. S. & Lichtman, J. W. Clarifying tissue clearing. Cell 162, 246–257 (2015).
Richardson, D. S. et al. Tissue clearing. Nat. Rev. Methods Primers 1, 84 (2021).
Zilova, L. et al. Fish primary embryonic pluripotent cells assemble into retinal tissue mirroring in vivo early eye development. eLife 10, e66998 (2021).
Daetwyler, S. & Fiolka, R. P. Light-sheets and smart microscopy, an exciting future is dawning. Commun. Biol. 6, 502 (2023).
Shi, Y. et al. Smart lattice light-sheet microscopy for imaging rare and complex cellular events. Nat. Methods 21, 301–310 (2024).
Beghin, A. et al. Automated high-speed 3D imaging of organoid cultures with multi-scale phenotypic quantification. Nat. Methods 19, 881–892 (2022). This study presents JeWells, a microfabricated chip and imaging platform that enables automated high-speed 3D light-sheet imaging and quantitative phenotyping of hundreds of organoids per hour.
Renner, H. et al. A fully automated high-throughput workflow for 3D-based chemical screening in human midbrain organoids. eLife 9, e52904 (2020).
Moos, F. et al. Open-top multisample dual-view light-sheet microscope for live imaging of large multicellular systems. Nat. Methods 21, 798–803 (2024).
Schermelleh, L. et al. Super-resolution microscopy demystified. Nat. Cell Biol. 21, 72–84 (2019).
Ormel, P. R. et al. Microglia innately develop within cerebral organoids. Nat. Commun. 9, 4167 (2018).
Hell, S. W. & Wichmann, J. Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994).
Wu, Z., Xu, X. & Xi, P. Stimulated emission depletion microscopy for biological imaging in four dimensions: a review. Microsc. Res. Tech. 84, 1947–1958 (2021).
Valli, J. et al. Seeing beyond the limit: a guide to choosing the right super-resolution microscopy technique. J. Biol. Chem. 297, 100791 (2021).
Wilson, E., Knudson, W. & Newell-Litwa, K. Hyaluronan regulates synapse formation and function in developing neural networks. Sci. Rep. 10, 16459 (2020).
Bon, P. et al. Self-interference 3D super-resolution microscopy for deep tissue investigations. Nat. Methods 15, 449–454 (2018).
Hannebelle, M. T. M. et al. Open-source microscope add-on for structured illumination microscopy. Nat. Commun. 15, 1550 (2024).
Leitgeb, R. A. & Baumann, B. Multimodal optical medical imaging concepts based on optical coherence tomography. Front. Phys. https://doi.org/10.3389/fphy.2018.00114 (2018).
Browne, A. W. et al. Structural and functional characterization of human stem-cell-derived retinal organoids by live imaging. Investig. Ophthalmol. Vis. Sci. 58, 3311–3318 (2017).
Huang, Y. et al. Optical coherence tomography detects necrotic regions and volumetrically quantifies multicellular tumor spheroids. Cancer Res. 77, 6011–6020 (2017).
Deloria, A. J. et al. Ultra-high-resolution 3D optical coherence tomography reveals inner structures of human placenta-derived trophoblast organoids. IEEE Trans. Biomed. Eng. 68, 2368–2376 (2021).
Wang, B. et al. Deep learning based characterization of human organoids using optical coherence tomography. Biomed. Opt. Express 15, 3112–3127 (2024).
Capowski, E. E. et al. Reproducibility and staging of 3D human retinal organoids across multiple pluripotent stem cell lines. Development 146, dev171686 (2019).
Ming, Y. et al. Longitudinal morphological and functional characterization of human heart organoids using optical coherence tomography. Biosens. Bioelectron. 207, 114136 (2022).
Apelian, C., Harms, F., Thouvenin, O. & Boccara, A. C. Dynamic full field optical coherence tomography: subcellular metabolic contrast revealed in tissues by interferometric signals temporal analysis. Biomed. Opt. Express 7, 1511–1524 (2016).
Scholler, J. et al. Dynamic full-field optical coherence tomography: 3D live-imaging of retinal organoids. Light Sci. Appl. 9, 140 (2020).
Azzollini, S., Monfort, T., Thouvenin, O. & Grieve, K. Dynamic optical coherence tomography for cell analysis. Biomed. Opt. Express 14, 3362–3379 (2023).
Morishita, R. et al. Label-free intratissue activity imaging of alveolar organoids with dynamic optical coherence tomography. Biomed. Opt. Express 14, 2333–2351 (2023).
Wang, L., Fu, R., Xu, C. & Xu, M. Methods and applications of full-field optical coherence tomography: a review. J. Biomed. Opt. 27, 050901 (2022).
Schröter, J. et al. A large and diverse brain organoid dataset of 1,400 cross-laboratory images of 64 trackable brain organoids. Sci. Data 11, 514 (2024).
Schöneberg, J. et al. 4D cell biology: big data image analytics and lattice light-sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell–derived intestinal organoids. Mol. Biol. Cell 29, 2959–2968 (2018).
Juhola, M. et al. Signal analysis and classification methods for the calcium transient data of stem cell-derived cardiomyocytes. Comput. Biol. Med. 61, 1–7 (2015).
Teles, D., Kim, Y., Ronaldson-Bouchard, K. & Vunjak-Novakovic, G. Machine learning techniques to classify healthy and diseased cardiomyocytes by contractility profile. ACS Biomater. Sci. Eng. 7, 3043–3052 (2021).
Kowalczewski, A. et al. Integrating nonlinear analysis and machine learning for human induced pluripotent stem cell-based drug cardiotoxicity testing. J. Tissue Eng. Regen. Med. 16, 732–743 (2022).
Hoang, P. et al. Engineering spatial-organized cardiac organoids for developmental toxicity testing. Stem Cell Rep. 16, 1228–1244 (2021).
Joutsijoki, H., Haponen, M., Aalto-Setälä, K. & Juhola, M. A comparative study of machine learning algorithms and SIFT for identifying the quality of human induced pluripotent stem cell colony. In 2023 Conference on Computational Intelligence in Bioinformatics and Computational Biology 1–7 (IEEE, 2023).
Metzger, J. J. et al. Deep-learning analysis of micropattern-based organoids enables high-throughput drug screening of Huntington’s disease models. Cell Rep. Methods 2, 100297 (2022).
Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).
McQuin, C. et al. CellProfiler 3.0: next-generation image processing for biology. PLoS Biol. 16, e2005970 (2018).
Litjens, G. et al. A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017).
Badrinarayanan, V., Kendall, A. & Cipolla, R. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39, 2481–2495 (2017).
Gu, J. et al. Recent advances in convolutional neural networks. Pattern Recognit. 77, 354–377 (2018).
Esteva, A. et al. Deep learning-enabled medical computer vision. npj Digit. Med. 4, 5 (2021).
Zhao, Z. et al. Organoids. Nat. Rev. Methods Primers 2, 94 (2022).
Takebe, T. & Wells, J. M. Organoids by design. Science 364, 956–959 (2019).
Fernandes, T. G. Organoids as complex (bio)systems. Front. Cell Dev. Biol. 11, 1268540 (2023).
Mergenthaler, P. et al. Rapid 3D phenotypic analysis of neurons and organoids using data-driven cell segmentation-free machine learning. PLoS Comput. Biol. 17, e1008630 (2021).
Gritti, N. et al. MOrgAna: accessible quantitative analysis of organoids with machine learning. Development 148, dev199611 (2021).
Mukashyaka, P. et al. High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology with Cellos. Nat. Commun. 14, 8406 (2023). This paper introduces Cellos, a high-throughput computational pipeline that enables accurate 3D segmentation of organoids and their nuclei at single-cell resolution, providing powerful tools for cancer pharmacology and drug response analysis.
Albanese, A. et al. Multiscale 3D phenotyping of human cerebral organoids. Sci. Rep. 10, 21487 (2020).
Matthews, J. M. et al. OrganoID: a versatile deep learning platform for tracking and analysis of single-organoid dynamics. PLoS Comput. Biol. 18, e1010584 (2022).
Ao, Z. et al. Microfluidics guided by deep learning for cancer immunotherapy screening. Proc. Natl Acad. Sci. USA 119, e2214569119 (2022).
Sockell, A. et al. A microwell platform for high-throughput longitudinal phenotyping and selective retrieval of organoids. Cell Syst. 14, 764–776.e6 (2023).
Zhao, Y. et al. Integrating organoids and organ-on-a-chip devices. Nat. Rev. Bioeng. 2, 588–608 (2024).
Tebon, P. J. et al. Drug screening at single-organoid resolution via bioprinting and interferometry. Nat. Commun. 14, 3168 (2023).
Huang, M. S., Christakopoulos, F., Roth, J. G. & Heilshorn, S. C. Organoid bioprinting: from cells to functional tissues. Nat. Rev. Bioeng. 3, 126–142 (2025).
Kagan, B. J. et al. In vitro neurons learn and exhibit sentience when embodied in a simulated game-world. Neuron 110, 3952–3969.e8 (2022).
Cai, H. et al. Brain organoid reservoir computing for artificial intelligence. Nat. Electron. 6, 1032–1039 (2023). This paper presents Brainoware, a novel AI hardware that leverages human brain organoids as adaptive reservoirs, demonstrating nonlinear dynamics and unsupervised learning to perform tasks such as speech recognition and nonlinear equation prediction with low energy consumption.
Smirnova, L. Organoid intelligence (OI): the new frontier in biocomputing and intelligence-in-a-dish. Front. Sci. https://doi.org/10.3389/fsci.2023.1017235 (2023).
Kagan, B. J. The CL1 as a platform technology to leverage biological neural system functions. Nat. Rev. Bioeng. 3, 724–725 (2025).
Smirnova, L. Biocomputing with organoid intelligence. Nat. Rev. Bioeng. 2, 633–634 (2024).
Shlobin, N. A., Savulescu, J. & Baum, M. L. The ethical landscape of human brain organoids and a mindful innovation framework. Nat. Rev. Bioeng. 2, 785–796 (2024).
Young, K. M. et al. Correlating mechanical and gene expression data on the single cell level to investigate metastatic phenotypes. iScience 26, 106393 (2023).
Shioka, I. et al. Ex vivo SIM-AFM measurements reveal the spatial correlation of stiffness and molecular distributions in 3D living tissue. Acta Biomater. 189, 351–365 (2024).
Li, Q. et al. Multimodal charting of molecular and functional cell states via in situ electro-sequencing. Cell 186, 2002–2017.e21 (2023).
Cadwell, C. R. et al. Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat. Biotechnol. 34, 199–203 (2016).
Fan, K. et al. A machine learning assisted, label-free, non-invasive approach for somatic reprogramming in induced pluripotent stem cell colony formation detection and prediction. Sci. Rep. 7, 13496 (2017).
Joutsijoki, H., Haponen, M., Rasku, J., Aalto-Setälä, K. & Juhola, M. Machine learning approach to automated quality identification of human induced pluripotent stem cell colony images. Comput. Math. Methods Med. 2016, 3091039 (2016).
Zhang, H. et al. A novel machine learning based approach for iPS progenitor cell identification. PLoS Comput. Biol. 15, e1007351 (2019).
Kanda, G. N. et al. Robotic search for optimal cell culture in regenerative medicine. eLife 11, e77007 (2022).
Zhu, Y. et al. Deep learning-based predictive identification of neural stem cell differentiation. Nat. Commun. 12, 2614 (2021).
Feng, W. et al. Computational profiling of hiPSC-derived heart organoids reveals chamber defects associated with NKX2-5 deficiency. Commun. Biol. 5, 399 (2022).
He, C. et al. BOMA, a machine-learning framework for comparative gene expression analysis across brains and organoids. Cell Rep. Methods 3, 100409 (2023).
Kassis, T., Hernandez-Gordillo, V., Langer, R. & Griffith, L. G. OrgaQuant: human intestinal organoid localization and quantification using deep convolutional neural networks. Sci. Rep. 9, 12479 (2019).
Kok, R. N. U. et al. OrganoidTracker: efficient cell tracking using machine learning and manual error correction. PLoS ONE 15, e0240802 (2020).
