Parafenestella varangrensis sp. nov., a phomenin producing fungus from the Arctic

parafenestella-varangrensis-sp-nov.,-a-phomenin-producing-fungus-from-the-arctic
Parafenestella varangrensis sp. nov., a phomenin producing fungus from the Arctic

Data availability

The sequencing data generated for this study are available in the NCBI GenBank and European Nucleotide Archive databases under the accession numbers PV682574–PV682576 and PV686109–PV686110. P. varangrensis culture is deposited at the CBS culture collection at the Westerdijk Fungal Biodiversity Institute in the Netherlands (https://wi.knaw.nl/fungal_table) under accession number CBS 153929. The holotype of the fungus TROM-F-26890, a freeze-dried culture, is deposited at the Arctic University Museum of Norway Fungarium and voucher information can be accessed at the Global Diversity Information Facility (https://www.gbif.org/occurrence/5203505382). Other data are available in the article and its supplementary material.

References

  1. Jaklitsch, W. M. et al. A preliminary account of the cucurbitariaceae. Stud. Mycol. 90, 71–118. https://doi.org/10.1016/j.simyco.2017.11.002 (2018).

    Google Scholar 

  2. Jaklitsch, W. M. & Voglmayr, H. Fenestelloid clades of the cucurbitariaceae. Persoonia 44, 1–40. https://doi.org/10.3767/persoonia.2020.44.01 (2020).

    Google Scholar 

  3. Eisvand, P., Mehrabi-Koushki, M. & Crous, P. W. A revision of the family cucurbitariaceae with additional new taxa from forest trees in Iran. Mycol. Prog. 23, 14–14. https://doi.org/10.1007/s11557-024-01953-5 (2024).

    Google Scholar 

  4. Hyde, K. D. et al. Families of dothideomycetes. Fungal Divers. 63, 1–313. https://doi.org/10.1007/s13225-013-0263-4 (2013).

    Google Scholar 

  5. Tringali, C., Parisi, A. & Piattelli, M. Magnano Di San Lio, G. Phomenins A and B, bioactive polypropionate pyrones from culture fluids of Phoma Tracheiphila. Nat. Prod. Lett. 3, 101–106. https://doi.org/10.1080/10575639308043845 (1993).

    Google Scholar 

  6. Pedras, M. S. C., Morales, V. M., Taylor, J. L. & Phomapyrones Three metabolites from the Blackleg fungus. Phytochem 36, 1315–1318. https://doi.org/10.1016/S0031-9422(00)89658-2 (1994).

    Google Scholar 

  7. Pedras, M. S. C. & Chumala, P. B. Phomapyrones from Blackleg causing phytopathogenic fungi: isolation, structure determination, biosyntheses and biological activity. Phytochem 66, 81–87. https://doi.org/10.1016/j.phytochem.2004.10.011 (2005).

    Google Scholar 

  8. Ivanova, L., Petersen, D. & Uhlig, S. Phomenins and fatty acids from Alternaria infectoria. Toxicon 55, 1107–1114. https://doi.org/10.1016/j.toxicon.2009.12.017 (2010).

    Google Scholar 

  9. Wilk, W., Waldmann, H. & Kaiser, M. Gamma-pyrone natural products–a privileged compound class provided by nature. Bioorg. Med. Chem. 17, 2304–2309. https://doi.org/10.1016/j.bmc.2008.11.001 (2009).

    Google Scholar 

  10. Bhat, Z. S. et al. α-pyrones: small molecules with versatile structural diversity reflected in multiple Pharmacological activities-an update. Biomed. Pharmacother. 91, 265–277. https://doi.org/10.1016/j.biopha.2017.04.012 (2017).

    Google Scholar 

  11. Juwitaningsih, T., Juliawaty, L. D. & Syah, Y. M. Two pyrones with antibacterial activities from Alpinia malaccensis. Nat. Prod. Commun. 11, 1297–1298. https://doi.org/10.1177/1934578X1601100928 (2016).

    Google Scholar 

  12. Lee, J. et al. Marinopyrones A-D, α-pyrones from marine-derived actinomycetes of the family Nocardiopsaceae. Tetrahedron Lett. 57, 1997–2000. https://doi.org/10.1016/j.tetlet.2016.03.084 (2016).

    Google Scholar 

  13. Ding, L. et al. Production of new antibacterial 4-hydroxy-alpha-pyrones by a marine fungus Aspergillus niger cultivated in solid medium. Mar. Drugs. 17, 344 https://doi.org/10.3390/md17060344 (2019).

    Google Scholar 

  14. Chen, Y. et al. Metabolites with cytotoxic activities from the Mangrove endophytic fungus sp. 2ST2. Front. Chem. 10, 842405 https://doi.org/10.3389/fchem.2022.842405 (2022).

    Google Scholar 

  15. Ding, B. et al. Bioactive α-pyrone meroterpenoids from Mangrove endophytic fungus Sp. Nat. Prod. Res. 30, 2805–2812. https://doi.org/10.1080/14786419.2016.1164702 (2016).

    Google Scholar 

  16. Oh, D. C., Gontang, E. A., Kauffman, C. A., Jensen, P. R. & Fenical, W. Salinipyrones and pacificanones, mixed-precursor polyketides from the marine actinomycete. J. Nat. Prod. 71, 570–575. https://doi.org/10.1021/np0705155 (2008).

    Google Scholar 

  17. Shin, J., Paul, V. J. & Fenical, W. New macrocyclic alpha-pyrones and gamma-pyrones from the marine red Alga Phacelocarpus labillardieri. Tetrahedron Lett. 27, 5189–5192. https://doi.org/10.1016/S0040-4039(00)85165-5 (1986).

    Google Scholar 

  18. Hussain, M. K. et al. Coumarins as versatile therapeutic phytomolecules: A systematic review. Phytomedicine 134, 155972 https://doi.org/10.1016/j.phymed.2024.155972 (2024).

    Google Scholar 

  19. Liu, X. L., Wang, Y. L., Zaleta-Pinet, D. A., Borris, R. P. & Clark, B. R. Antibacterial and anti-biofilm activity of pyrones from a Pseudomonas mosselii strain. Antibiotics-Basel 11, 1655 https://doi.org/10.3390/antibiotics11111655 (2022).

    Google Scholar 

  20. Rämä, T. et al. Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol. 8, 46–58. https://doi.org/10.1016/j.funeco.2013.12.002 (2014).

    Google Scholar 

  21. Ratnasingham, S. & Hebert, P. D. N. bold: the barcode of life data system. Mol. Ecol. Notes. 7, 355–364. https://doi.org/10.1111/j.1471-8286.2007.01678.x (2007). http://www.barcodinglife.org

    Google Scholar 

  22. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010 (2013).

    Google Scholar 

  23. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/10.1093/bioinformatics/btu033 (2014).

    Google Scholar 

  24. Huelsenbeck, J. P. & Ronquist, F. M. R. B. A. Y. E. S. Bayesian inference of phylogenetic trees. Bioinformatics 17, 754–755. https://doi.org/10.1093/bioinformatics/17.8.754 (2001).

    Google Scholar 

  25. EUCAST. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbio Infect. 9, 9–15 https://doi.org/10.1046/j.1469-0691.2003.00790.x (2003).

  26. Wiegand, I., Hilpert, K. & Hancock, R. E. W. Agar and broth Dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3, 163–175. https://doi.org/10.1038/nprot.2007.521 (2008).

    Google Scholar 

  27. Markovic, V., Joksovic, M., Markovic, S. & Jakovljevic, I. Influence of anthraquinone scaffold on E/Z isomer distribution of two thiosemicarbazone derivatives. 2D NMR and DFT studies. J. Mol. Struct. 1058, 291–297. https://doi.org/10.1016/j.molstruc.2013.11.025 (2014).

    Google Scholar 

  28. Lin, J. et al. Room temperature stable E, Z -diphosphenes: their isomerization, coordination, and cycloaddition chemistry. Chem. Sci. (Cambridge). 14, 10944–10952. https://doi.org/10.1039/d3sc04506d (2023).

    Google Scholar 

  29. Hantosh, L. A., Sami, S. A. & Fadhil, G. F. Structure-stability and energy storage capacity of Para acetyl-dichloro chalcone and Chromen isomers: a density functional theory investigation. Orient. J. Chem. 40, 1774–1785. https://doi.org/10.13005/ojc/400630 (2024).

    Google Scholar 

  30. Kearns, D. R. The temperature dependence of the cis—trans photoisomerization of Azo compounds: theoretical considerations. J. Phys. Chem. 69, 1062–1065. https://doi.org/10.1021/j100887a504 (1965).

    Google Scholar 

  31. Eade, S. J. et al. Biomimetic synthesis of pyrone-derived natural products: exploring chemical pathways from a unique polyketide precursor. J. Org. Chem. 73, 4830–4839. https://doi.org/10.1021/jo800220w (2008).

    Google Scholar 

  32. Sharma, P., Powell, K. J., Burnley, J., Awaad, A. S. & Moses, J. E. Total synthesis of polypropionate-derived γ-pyrone natural products. Synthesis 2011, 2865–2892. https://doi.org/10.1055/s-0030-1260168 (2011).

    Google Scholar 

  33. Bhat, Z. S., Rather, M. A., Syed, K. Y. & Ahmad, Z. α-Pyrones and their hydroxylated analogs as promising scaffolds against Mycobacterium tuberculosis. Future Med. Chem. 9, 2053–2067. https://doi.org/10.4155/fmc-2017-0116 (2017).

    Google Scholar 

Download references

Acknowledgements

We are grateful for the technical support of Dr. Chun Li (Marbio, Faculty of Bioscience, Fisheries, and Economics, UiT) for PCR amplifications, DNA sequencing of marker genes, and running the bioactivity testing. We acknowledge the Barcode of Life Systems for their help with DNA extractions, PCR amplification, and sequencing of marker genes (project NFM). In addition, we sincerely thank Per Pippin Aspaas from the University Library at UiT for helping us with the Latin species epithet.

Funding

Open access funding provided by UiT The Arctic University of Norway (incl University Hospital of North Norway). This research was fully funded through a grant by the Centre for New Antibacterial Strategies (CANS; Tromsø research foundation grant 2520855) at UiT-The Arctic University of Norway. The Norwegian Biodiversity Information Centre (Artsdatabanken; grant 2552164) additionally supported it.

Author information

Authors and Affiliations

  1. Marbio, Norwegian College of Fishery Science (NFH), Faculty of Biosciences, Fisheries, and Economics , UiT-The Arctic University of Norway, 9037, Tromsø, Norway

    Sailesh Maharjan, Jeanette Hammer Andersen, Espen Holst Hansen & Teppo Rämä

  2. Department of Pharmacy (IFA), Faculty of Health Sciences, UiT-The Arctic University of Norway, 9037, Tromsø, Norway

    Julie Marie Lesjø, Johan Isaksson & Kine Østnes Hansen

  3. Department of Chemistry (IK), Faculty of Science and Technology, UiT-The Arctic University of Norway, 9037, Tromsø, Norway

    Johan Isaksson

Authors

  1. Sailesh Maharjan
  2. Julie Marie Lesjø
  3. Johan Isaksson
  4. Kine Østnes Hansen
  5. Jeanette Hammer Andersen
  6. Espen Holst Hansen
  7. Teppo Rämä

Contributions

S.M. and T.R. conceptualized and designed the experiment. S.M. performed the experiments (fermentation, extraction, isolation of metabolites), analyzed all the data, wrote the first draft, and finalized the manuscript. J.M.L. contributed to the isolation of compounds and bioactivity testing. J.I. performed NMR data acquisition and structure elucidation. T.R. isolated, identified, and described the fungus. E.H.H., J.H.A. and T.R. acquired the funding. K.Ø.H., J.H.A., E.H.H., and T.R. supervised the project. All authors read, edited, and approved the finalized version of the manuscript.

Corresponding author

Correspondence to Sailesh Maharjan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maharjan, S., Lesjø, J.M., Isaksson, J. et al. Parafenestella varangrensis sp. nov., a phomenin producing fungus from the Arctic. Sci Rep (2025). https://doi.org/10.1038/s41598-025-33070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41598-025-33070-y

Keywords