Physics informed machine learning for predictive toxicology and optimization of curcumin nanocarriers

physics-informed-machine-learning-for-predictive-toxicology-and-optimization-of-curcumin-nanocarriers
Physics informed machine learning for predictive toxicology and optimization of curcumin nanocarriers

References

  1. Fuloria, S. et al. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Front. Pharmacol. 13, 820806 (2022).

    Google Scholar 

  2. Zhang, P., Liu, H., Yu, Y., Peng, S. & Zhu, S. Role of Curcuma longae Rhizoma in medical applications: Research challenges and opportunities. Front. Pharmacol. 15, 1430284 (2024).

    Google Scholar 

  3. Wang, H. et al. Curcumin regulates cancer progression: Focus on ncRNAs and molecular signaling pathways. Front. Oncol. 11, 660712 (2021).

    Google Scholar 

  4. Liu, W. et al. Oral bioavailability of curcumin: problems and advancements. J. Drug Target. 24(8), 694–702 (2016).

    Google Scholar 

  5. El-Saadony, M. T. et al. Curcumin, an active component of turmeric: Biological activities, nutritional aspects, immunological, bioavailability, and human health benefits-a comprehensive review. Front. Immunol. 16, 1603018 (2025).

    Google Scholar 

  6. Amaroli, A. et al. The bright side of curcumin: A narrative review of its therapeutic potential in cancer management. Cancers 16(14), 2580 (2024).

    Google Scholar 

  7. Boyuklieva, R., Zahariev, N., Simeonov, P., Penkov, D. & Katsarov, P. Next-generation drug delivery for neurotherapeutics: The promise of stimuli-triggered nanocarriers. Biomedicines. 13(6), 1464 (2025).

    Google Scholar 

  8. Mohamed RRGA, Ali SM, Ahmed IS, Rawas-Qalaji M, Hussain Z. Next-generation nanocarriers for colorectal cancer: passive, active, and stimuli-responsive strategies for precision therapy. Biomaterials Science. 2025.

  9. Wang, N., Cheng, X., Li, N., Wang, H. & Chen, H. Nanocarriers and their loading strategies. Adv. Healthcare Mater. 8(6), 1801002 (2019).

    Google Scholar 

  10. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 2012:5577–91.

  11. Duan, X. & Li, Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9(9–10), 1521–1532 (2013).

    Google Scholar 

  12. Behzadi, S. et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 46(14), 4218–4244 (2017).

    Google Scholar 

  13. Glorioso V. Formulation, Characterization, and Machine Learning Prediction of Poly (lactic-co-glycolic) acid Nanoparticles for Oncological Pregnant Women Treatment: Politecnico di Torino; 2025.

  14. Chaurawal, N. et al. Development of fucoidan/polyethyleneimine based sorafenib-loaded self-assembled nanoparticles with machine learning and DoE-ANN implementation: Optimization, characterization, and in-vitro assessment for the anticancer drug delivery. Int. J. Biol. Macromol. 279, 135123 (2024).

    Google Scholar 

  15. Babajide Mustapha, I. & Saeed, F. Bioactive molecule prediction using extreme gradient boosting. Molecules 21(8), 983 (2016).

    Google Scholar 

  16. Almansour, K. & Alqahtani, A. S. Utilization of machine learning approach for production of optimized PLGA nanoparticles for drug delivery applications. Sci. Rep. 15(1), 8840 (2025).

    Google Scholar 

  17. Mahdi, W. A., Alhowyan, A. & Obaidullah, A. J. Intelligence analysis of drug nanoparticles delivery efficiency to cancer tumor sites using machine learning models. Sci. Rep. 15(1), 1017 (2025).

    Google Scholar 

  18. Sinha, K., Ghosh, N. & Sil, P. C. A review on the recent applications of deep learning in predictive drug toxicological studies. Chem. Res. Toxicol. 36(8), 1174–1205 (2023).

    Google Scholar 

  19. Zhang, R., Wen, H., Lin, Z., Li, B. & Zhou, X. Artificial intelligence-driven drug toxicity prediction: Advances, challenges, and future directions. Toxics. 13(7), 525 (2025).

    Google Scholar 

  20. Meng, C., Griesemer, S., Cao, D., Seo, S. & Liu, Y. When physics meets machine learning: A survey of physics-informed machine learning. Mach. Learn. Comput. Sci. Eng. 1(1), 20 (2025).

    Google Scholar 

  21. Fathi-Karkan, S., Rahdar, A. & Shirzad, M. Integrating machine-learning and nanotechnology to quantify pH-modulated oxaliplatin release. Sci. Rep. 15(1), 42190 (2025).

    Google Scholar 

  22. Rehman D. Physics-informed Deep Learning and Differentiable Mechanistic Models for Multicomponent Transport Phenomena: Massachusetts Institute of Technology; 2024.

  23. Jacobsen C. Enhancing Physical Modeling with Interpretable Physics-Aware Machine Learning 2024.

  24. Merabet, K. et al. Predicting water quality variables using gradient boosting machine: global versus local explainability using SHapley Additive Explanations (SHAP). Earth Sci. Inf. 18(3), 1–34 (2025).

    Google Scholar 

  25. Chuah, J., Kruger, U., Wang, G., Yan, P. & Hahn, J. Framework for testing robustness of machine learning-based classifiers. J. Person. Med. 12(8), 1314 (2022).

    Google Scholar 

  26. Parashar AK, Jamliya A, Nasrat S, Soni R. XGBoost for heart disease prediction achieving high accuracy with robust machine learning techniques. Int. J. Innov. Sci. Eng. Manag. 2025:185–91.

  27. Azad, M. M., Cheon, Y., Raouf, I., Khalid, S. & Kim, H. S. Intelligent computational methods for damage detection of laminated composite structures for mobility applications: A comprehensive review. Arch. Comput. Methods Eng. 32(1), 441–469 (2025).

    Google Scholar 

  28. Das, A. et al. Prediction of outcome in acute lower-gastrointestinal haemorrhage based on an artificial neural network: Internal and external validation of a predictive model. Lancet 362(9392), 1261–1266 (2003).

    Google Scholar 

Download references