References
-
Fuloria, S. et al. A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Front. Pharmacol. 13, 820806 (2022).
-
Zhang, P., Liu, H., Yu, Y., Peng, S. & Zhu, S. Role of Curcuma longae Rhizoma in medical applications: Research challenges and opportunities. Front. Pharmacol. 15, 1430284 (2024).
-
Wang, H. et al. Curcumin regulates cancer progression: Focus on ncRNAs and molecular signaling pathways. Front. Oncol. 11, 660712 (2021).
-
Liu, W. et al. Oral bioavailability of curcumin: problems and advancements. J. Drug Target. 24(8), 694–702 (2016).
-
El-Saadony, M. T. et al. Curcumin, an active component of turmeric: Biological activities, nutritional aspects, immunological, bioavailability, and human health benefits-a comprehensive review. Front. Immunol. 16, 1603018 (2025).
-
Amaroli, A. et al. The bright side of curcumin: A narrative review of its therapeutic potential in cancer management. Cancers 16(14), 2580 (2024).
-
Boyuklieva, R., Zahariev, N., Simeonov, P., Penkov, D. & Katsarov, P. Next-generation drug delivery for neurotherapeutics: The promise of stimuli-triggered nanocarriers. Biomedicines. 13(6), 1464 (2025).
-
Mohamed RRGA, Ali SM, Ahmed IS, Rawas-Qalaji M, Hussain Z. Next-generation nanocarriers for colorectal cancer: passive, active, and stimuli-responsive strategies for precision therapy. Biomaterials Science. 2025.
-
Wang, N., Cheng, X., Li, N., Wang, H. & Chen, H. Nanocarriers and their loading strategies. Adv. Healthcare Mater. 8(6), 1801002 (2019).
-
Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed. 2012:5577–91.
-
Duan, X. & Li, Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9(9–10), 1521–1532 (2013).
-
Behzadi, S. et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev. 46(14), 4218–4244 (2017).
-
Glorioso V. Formulation, Characterization, and Machine Learning Prediction of Poly (lactic-co-glycolic) acid Nanoparticles for Oncological Pregnant Women Treatment: Politecnico di Torino; 2025.
-
Chaurawal, N. et al. Development of fucoidan/polyethyleneimine based sorafenib-loaded self-assembled nanoparticles with machine learning and DoE-ANN implementation: Optimization, characterization, and in-vitro assessment for the anticancer drug delivery. Int. J. Biol. Macromol. 279, 135123 (2024).
-
Babajide Mustapha, I. & Saeed, F. Bioactive molecule prediction using extreme gradient boosting. Molecules 21(8), 983 (2016).
-
Almansour, K. & Alqahtani, A. S. Utilization of machine learning approach for production of optimized PLGA nanoparticles for drug delivery applications. Sci. Rep. 15(1), 8840 (2025).
-
Mahdi, W. A., Alhowyan, A. & Obaidullah, A. J. Intelligence analysis of drug nanoparticles delivery efficiency to cancer tumor sites using machine learning models. Sci. Rep. 15(1), 1017 (2025).
-
Sinha, K., Ghosh, N. & Sil, P. C. A review on the recent applications of deep learning in predictive drug toxicological studies. Chem. Res. Toxicol. 36(8), 1174–1205 (2023).
-
Zhang, R., Wen, H., Lin, Z., Li, B. & Zhou, X. Artificial intelligence-driven drug toxicity prediction: Advances, challenges, and future directions. Toxics. 13(7), 525 (2025).
-
Meng, C., Griesemer, S., Cao, D., Seo, S. & Liu, Y. When physics meets machine learning: A survey of physics-informed machine learning. Mach. Learn. Comput. Sci. Eng. 1(1), 20 (2025).
-
Fathi-Karkan, S., Rahdar, A. & Shirzad, M. Integrating machine-learning and nanotechnology to quantify pH-modulated oxaliplatin release. Sci. Rep. 15(1), 42190 (2025).
-
Rehman D. Physics-informed Deep Learning and Differentiable Mechanistic Models for Multicomponent Transport Phenomena: Massachusetts Institute of Technology; 2024.
-
Jacobsen C. Enhancing Physical Modeling with Interpretable Physics-Aware Machine Learning 2024.
-
Merabet, K. et al. Predicting water quality variables using gradient boosting machine: global versus local explainability using SHapley Additive Explanations (SHAP). Earth Sci. Inf. 18(3), 1–34 (2025).
-
Chuah, J., Kruger, U., Wang, G., Yan, P. & Hahn, J. Framework for testing robustness of machine learning-based classifiers. J. Person. Med. 12(8), 1314 (2022).
-
Parashar AK, Jamliya A, Nasrat S, Soni R. XGBoost for heart disease prediction achieving high accuracy with robust machine learning techniques. Int. J. Innov. Sci. Eng. Manag. 2025:185–91.
-
Azad, M. M., Cheon, Y., Raouf, I., Khalid, S. & Kim, H. S. Intelligent computational methods for damage detection of laminated composite structures for mobility applications: A comprehensive review. Arch. Comput. Methods Eng. 32(1), 441–469 (2025).
-
Das, A. et al. Prediction of outcome in acute lower-gastrointestinal haemorrhage based on an artificial neural network: Internal and external validation of a predictive model. Lancet 362(9392), 1261–1266 (2003).
