Physiochemical characteristics of date pollen extract-hybrid yoghurt as a functional dairy food modulates hypothyroidic symptoms in modeled rats

physiochemical-characteristics-of-date-pollen-extract-hybrid-yoghurt-as-a-functional-dairy-food-modulates-hypothyroidic-symptoms-in-modeled-rats
Physiochemical characteristics of date pollen extract-hybrid yoghurt as a functional dairy food modulates hypothyroidic symptoms in modeled rats

References

  1. Gil, A. & Ortega, R. M. Introduction and executive summary of the Supplement, role of milk and dairy products in health and prevention of noncommunicable chronic diseases: A series of systematic reviews. Adv. Nutr. 10 (2), 67–73. https://doi.org/10.1093/advances/nmz02 (2019).

    Google Scholar 

  2. Jakubowska, D. et al. Health benefits of dairy products’ Consumption—Consumer point of view. Foods 13 (23), 3925. https://doi.org/10.3390/foods13233925 (2024).

    Google Scholar 

  3. Nongonierma, A. B., O’Keeffe, M. B. & FitzGerald, R. J. Milk protein hydrolysates and bioactive peptides. In Advanced Dairy Chemistry, Volume 1B: Proteins: Applied Aspects (eds McSweeney, P. L. H. & O’Mahony, J. A.) 417–482 (Springer Science + Business Media, 2016).

    Google Scholar 

  4. Dehghan, M. et al. Association of dairy intake with cardiovascular disease and mortality in 21 countries from five continents (PURE): a prospective cohort study. Lancet 392, 2288–2297 (2018).

    Google Scholar 

  5. Gijsbers, L. et al. Consumption of dairy foods and diabetes incidence: a dose-response meta-analysis of observational studies. Am. J. Clin. Nutr. 103 (4), 1111–1124 (2016).

    Google Scholar 

  6. Drouin-Chartier, J. P. et al. Systematic review of the association between dairy product consumption and risk of cardiovascular-related clinical outcomes. Adv. Nutr. 7, 1026–1040 (2016).

    Google Scholar 

  7. Bury, S., Cicho´n, M., Bauchinger, U. & Sadowska, E. T. High oxidative stress despite low energy metabolism and vice versa: insights through temperature acclimation in an ectotherm. J. Therm. Biol. 78, 36–41 (2018).

    Google Scholar 

  8. Rahman, S. S. et al. Thyroid stimulatory activity of Houttuynia cordata Thunb. Ethanolic extract in 6-Propyl-Thiouracil-Induced hypothyroid and STZ induced diabetes rats: In vivo and. Silico Stud. Nutrients. 17 (3), 594. https://doi.org/10.3390/nu17030594 (2025).

    Google Scholar 

  9. Macvanin, M. T. et al. The protective role of nutritional antioxidants against oxidative stress in thyroid disorders. Front. Endocrinol. 13, 1092837 (2023). [CrossRef] [PubMed].

    Google Scholar 

  10. Lee, H. S., Song, M. W., Kim, K.-T., Hong, W.-S. & Paik, H.-D. Antioxidant effect and sensory evaluation of yoghurt supplemented with hydroponic ginseng root extract. Foods 10(3), 639 (2021).

    Google Scholar 

  11. Branciari, R. et al. Evaluation of the antioxidant properties and oxidative stability of Pecorino cheese made from the Raw milk of Ewes fed Rosmarinus officinalis L. leaves. Int. J. Food Sci. Technol. 50, 558–565 (2015).

    Google Scholar 

  12. Mbaeyi-Nwaoha, I. E., Uzoigwe, A. C. & Onyeaka, H. Quality evaluation of herbal yoghurt produced using cinnamon (cinnamon cassia), garlic (allium sativum) and ginger (zingiber officinale). J. Food. Quality https://doi.org/10.1155/2024/8262211 (2024).

    Google Scholar 

  13. Hassan, H. M. M. Chemical composition and nutritional value of palm pollen grains. Global J. Biotechnol. Biochem. 6 (1), 01–07 (2011).

    Google Scholar 

  14. Ahmed, H. et al. Health benefits, male fertility, nutritional aspects of dates and date palm pollens: an overview. J. Pure Appl. Agric. 7 (4), 58–72 (2022).

    Google Scholar 

  15. Al Juhaimi, F. et al. Effect of date varieties on physico-chemical properties, fatty acid composition, Tocopherol contents, and phenolic compounds of some date seed and oils. J. Food Process. Preserv. 42 (4), 1–6 (2018).

    Google Scholar 

  16. Eraslan, G. et al. Evaluation of protective effect of bee pollen against Propoxur toxicity in rat. Ecotoxicol. Environ. Saf. 72, 931–937 (2008).

    Google Scholar 

  17. Bishr, M. & Desoukey, S. Y. Comparative study of the nutritional value of four types of Egyptian palm pollens. J. Pharm. Nutr. Sci. 2 (1), 50–56. https://doi.org/10.6000/1927-5951.2012.02.01.7 (2012).

    Google Scholar 

  18. Hoehnel, A., Zannini, E. & Arendt, E. K. Targeted formulation of plant-based protein-foods: supporting the food system’s transformation in the context of human health, environmental sustainability and consumer trends. Trends Food Sci. Technol. 128, 238–252 (2022).

    Google Scholar 

  19. Dewan, M. F., Ahiduzzaman, M., Islam, M. N. & Shozib, H. B. Potential benefits of bioactive compounds of traditional rice grown in South and Southeast asia: a review. Rice Sci. 30, 537–551 (2023).

    Google Scholar 

  20. Medici, E., Craig, W. J. & Rowland, I. A comprehensive analysis of the nutritional composition of plant-based drinks and yoghurt alternatives in Europe. Nutrients 15, 3415 (2023).

    Google Scholar 

  21. Lees, G. J. & Jago, G. R. Methods for Estimation of acetaldehyde in cultured dairy products. Australian J. Dairy. Technol. 24, 181–185 (1976).

    Google Scholar 

  22. AOAC. Official Methods of Analysis. 18th Edition, Association of Official Analytical chemists, Gaithersburg. (2007).

  23. Brand-Williams, W., Cuvelier, M. E. & Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT – Food Sci. Technol. 28, 25–30 (1995).

    Google Scholar 

  24. Re, R., Pellegrini, N. & Proteggente, A. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999).

    Google Scholar 

  25. Shazly, A. B. et al. Probiotic yoghurt made from milk of Ewes fed a diet supplemented with Spirulina platensis or fish oil. Ann. Microbiol. 72, 29. https://doi.org/10.1186/s13213-022-01686-4 (2022).

    Google Scholar 

  26. Sahoo, D., Roy, A., Bhanja, S. & Chainy, G. Hypothyroidism impairs antioxidant defense system and testicular physiology during development and maturation. Gen. Comp. Endocrinol. 156 (1), 63–70 (2008).

    Google Scholar 

  27. Jiheel, M. & Arrak, J. Effect of different doses of ethanolic extract of date palm pollen grains on serum gonadotropin and total glutathione in mature female rats. Kufa Journal Veterinary Med. Sciences. 6, 109–116 (2015).

    Google Scholar 

  28. Bancroft, J. D. & Layton, C. The Hematoxylin and Eosin. In: Suvarna, S. K., Layton, C., Bancroft, J. D. Eds., Theory & Practice of Histological Techniques, 7th Edition, Churchill Livingstone of El Sevier, Philadelphia, Ch. 10 and 11, 172–214 (2013). https://doi.org/10.1016/B978-0-7020-4226-3.00010-X

  29. Akkurt, G., Kartal, B., Alimoğulları, M., Çaylı, S. & Alimoğulları, E. Effects of regular Whey protein consumption on rat thyroid functions. Turkish J. Med. Sci. 30 (51), 2213–2221. https://doi.org/10.3906/sag-20102-70 (2021).

    Google Scholar 

  30. Arslan, S., Inan, S. & Yenilmez, K. The effects of thymoquinone and Curcumin on the thyroid in rats with subacute fluoride poisoning. South. Afr. J. Anim. Sci. 53, 720–727. https://doi.org/10.4314/sajas.v53i5.11 (2023).

    Google Scholar 

  31. SAS. Statistical Analysis System. The SAS system for windows, release 9.2 SAS Institute. (2008).

  32. Shahin, F. M. I. Utilization of date palm pollen as natural source for producing function bakery product. Egypt. J. Agric. Res. 92 (4), 1457–1470 (2014).

    Google Scholar 

  33. Daoud, A. et al. Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of date palm pollen (DPP) from two Tunisian cultivars. Arab. J. Chem. 12, 3075–3086 (2019).

    Google Scholar 

  34. Szołtysik, M. et al. Effect of two combined functional additives on yoghurt properties. Foods 10, 1159. https://doi.org/10.3390/foods10061159 (2021).

    Google Scholar 

  35. Vahčić, N. & Hruäkar, M. Slovenian fermented milk with probiotics. Zb. Biotehniöke fak. Univ. V Ljubljani. Kmetijstvo Zootehnika. 76 (2), 41–46 (2000). http://www.bfro.uni-lj.si/zoo/publikacije/zbornik

    Google Scholar 

  36. Dmytrów, L., Mituniewicz-Małek, A., Ziarn, M. & Balejko, J. Storage stability of fermented milk with probiotic monoculture and transglutaminase. Czech J. Food Sci. 37 (5), 332–337 (2019).

    Google Scholar 

  37. Stojanovska, S., Krstanovski, A. & Tomovska, J. Research of acetaldehyde quantities in commercial and laboratory produced fermented products. CBU International Conference on Innovations in Science and Education March 22–24, Prague, Czech Republic (2017).

  38. El-Hadad, S. S., El-Aziz, A., Fouad, M., Sayed, M. M. & Sayed, A. F. Production and evaluation of probiotic brown yoghurt made from Buffalo milk as an innovative functional dairy product. Ann. Microbiol. 74, 41 (2024).

    Google Scholar 

  39. Niamah, A. K. Physicochemical and microbial characteristics of yoghurt with added Saccharomyces boulardii. Curr. Res. Nutr. Food Sci. Jour. 5 (3), 300–307 (2017).

    Google Scholar 

  40. Liang, H. et al. Methyl gallate: review of pharmacological activity. Pharmacol. Res. 194, 106849 (2023).

    Google Scholar 

  41. El-Kholy, W. M., Soliman, T. N. & Darwish, A. M. G. Evaluation of date palm pollen (Phoenix dactylifera L.) encapsulation, impact on the nutritional and functional properties of fortified yoghurt. PLoS ONE. 14 (10), e0222789. https://doi.org/10.1371/journal.pone.0222789 (2019).

    Google Scholar 

  42. Ryu, B-I. & Kim, K. T. Antioxidant activity and protective effect of Methyl gallate against t–BHP induced oxidative stress through inhibiting ROS production. Food Sci. Biotechnol. 31 (8), 1063–1072 (2022).

    Google Scholar 

  43. Shazly, A. B. et al. Release of antioxidant peptides from Buffalo and bovine caseins: influence of proteases on antioxidant capacities. Food Chem. 274, 261–267 (2019).

    Google Scholar 

  44. Cho, W. Y., Kim, D. H., Lee, H. J., Yeon, S. J. & Lee, C. H. Quality characteristic and antioxidant activity of yogurt containing Olive leaf hot water extract. CyTA – J. Food. 18 (1), 43–50. https://doi.org/10.1080/19476337.2019.1640797 (2020).

    Google Scholar 

  45. 46, Blejan, A. M., Nour, V., Corbu, A. R. & Codină, G. G. Influence of bilberry pomace powder addition on the physicochemical, functional, rheological, and sensory properties of stirred yogurt. Gels 10(10), 616 (2024).

    Google Scholar 

  46. Taha, S. et al. Antioxidant and antibacterial activities of bioactive peptides in buffalo’s yoghurt fermented with different starter cultures. Food Sci. Biotechnol. 26 (5), 1325–1332. https://doi.org/10.1007/s10068-017-0160-9 (2017).

    Google Scholar 

  47. Dabija, A. et al. Assessment of the antioxidant activity and quality attributes of yoghurt enhanced with wild herbs extracts.. J. Food Qual. https://doi.org/10.1155/2018/5329386 (2018).

    Google Scholar 

  48. Hasni, I. et al. Interaction of milk a- and b-caseins with tea polyphenols. Food Chem. 126, 630–639 (2011).

    Google Scholar 

  49. Zhang, H. et al. Interaction of milk Whey protein with common phenolic acids. J. Mol. Str. 1058, 228–233 (2014).

    Google Scholar 

  50. Izadi, Z., Nasirpour, A., Garoosi, G. A. & Tamjid, F. Rheological and physical properties of yoghurt enriched with phytosterol during storage. J. Food Sci. Technol. 52 (8), 5341–5346 (2015).

    Google Scholar 

  51. Sahan, N., Yasar, K. & Hayaloglu, A. Physical, chemical and flavour quality of non-fat yogurt as affected by a β-glucan hydrocolloidal composite during storage. Food Hydrocoll. 22, 1291–1297. https://doi.org/10.1016/j.foodhyd.2007.06.010 (2008).

    Google Scholar 

  52. Lee, W. J. & Lucey, J. A. Structure and physical properties of yoghurt gels: effect of inoculation rate and incubation temperature. J. Dairy. Sci. 87, 3153–3164 (2004).

    Google Scholar 

  53. Coggins, P. C., Rowe, D. E., Wilson, J. C. & Kumari, S. Storage and temperature effects on appearance and textural characteristics of conventional milk yoghurt. J. Sens. Stud. 25 (4), 549–576 (2010).

    Google Scholar 

  54. Abdel-Wahhab, K. G., Mannaa, F., El-Sahra, D., Morsy, F. & Gomaa, H. Effect of oral administration of methanolic root extract of Saussurea costus to rats after propylthiouracil-induced hypothyroid obesity. Comp. Clin. Pathol. 31, 1–14. https://doi.org/10.1007/s00580-022-03337-1 (2022).

    Google Scholar 

  55. Korbozova, N. K. et al. Antihypothyroid Effect Salidroside Molecules 27 (21), 7487 https://doi.org/10.3390/molecules27217487. (2022).

    Google Scholar 

  56. Panda, S., Kar, A. & Patil, S. Soy sterols in the regulation of thyroid functions, glucose homeostasis and hepatic lipid peroxidation in mice. Food Res. Int. 42 (8), 1087–1092 (2009).

    Google Scholar 

  57. Al-Samarrai, R. R., Al–Samarrai, A. M. H. & Al-Salihi, F. G. Identification of flavonoids in Iraqi date palm pollen by HPLC. Orient. J. Chem. 33 (2), 985–988. https://doi.org/10.13005/ojc/330252 (2017).

    Google Scholar 

  58. Petrulea, M., Muresan, A. & Dunce, I. Oxidative stress and antioxidant status in hypo- and hyperthyroidism. In. Tech. https://doi.org/10.5772/51018 (2012).

    Google Scholar 

  59. Najafi, Z., Zarban, A., Chamani, E., Honarbakhsh, M. & Sharifzadeh, G. Comparison of biochemical and oxidative stress parameters in hypo and hyperthyroid rat models. Mod. Care J. 17 (3), 102444. https://doi.org/10.5812/modernc.102444 (2020).

    Google Scholar 

  60. Roshni, R., Prabhu, K. A., Rao, Y. D., Sowndarya, K. & Nandini, M. Assessment of oxidative stress index in Sub-clinical hypothyroidism. Biomed Pharmacol. J 14 (2), (2021).

  61. Sarıtaş, S., Mondragon Portocarrero, A., dC., Miranda, J. M., Witkowska, A. M. & Karav, S. Functional yoghurt: types and health benefits. Appl. Sci. 14 (24), 11798. https://doi.org/10.3390/app1424117988 (2024).

    Google Scholar 

  62. Diez, J. J., Hernanz, A., Medina, S., Bayón, C. & Iglesias, P. Serum concentrations of tumour necrosis factor-alpha (TNF-alpha) and soluble TNF-alpha receptor p55 in patients with hypothyroidism and hyperthyroidism before and after normalization of thyroid function. Clin. endocrinol. 57(4), 515–521 (2002).

    Google Scholar 

  63. Shahrukh, M., Masood, T. & Saxena, S. Correlation of tumor necrosis factor alpha (TNF-α) with thyroid hormones (TSH, free T3 & free T4) in the patients of subclinical hypothyroidism. Int. J. Health Sci. 6 (S5), 12211–12217. https://doi.org/10.53730/ijhs.v6nS5.11967 (2022).

    Google Scholar 

  64. Bozbek, Ç. K. & Şentürk, M. Effect of Levothyroxine administration on oxidative stress and cytokine levels in rats with experimental hypothyroidism. J. Hellenic Veterinary Med. Soc. 74 (1), 5227–5234 (2023).

    Google Scholar 

  65. Caturegli, P. et al. Hypothyroidism in transgenic mice expressing IFN-gamma in the thyroid. . Proc. Natl. Acad. Sci. 97(4), 1719–1724 (2000).

    Google Scholar 

  66. Waly, M. Phytochemical characterization and health benefits of omani date pollen. FASEB J. https://doi.org/10.1096/fasebj.2020.34.s1.05071 (2020).

    Google Scholar 

  67. Chen, T. et al. Ethanolic extract of Puhuang (Pollen Typhae) modulates lipopolysaccharide-induced inflammatory response through inducible nitric oxide synthase / cyclooxygenase-2 signaling in RAW 264.7 macrophage. J. Tradit Chin. Med. 41 (6), 836–844. https://doi.org/10.19852/j.cnki.jtcm.2021.06.002 (2021).

    Google Scholar 

  68. Elblehi, S. S., El-Sayed, Y. S., Soliman, M. M. & Shukry, M. D. Palm pollen extract avert Doxorubicin-Induced cardiomyopathy fibrosis and associated Oxidative/Nitrosative Stress, inflammatory Cascade, and Apoptosis-Targeting Bax/Bcl-2 and Caspase-3 signaling pathways. Anim. (Basel). 11 (3), 886. https://doi.org/10.3390/ani11030886 (2021).

    Google Scholar 

  69. Bhol, N. K. et al. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed. Pharmacother. 178, 117177 (2024).

    Google Scholar 

  70. Mancini, A. et al. Thyroid hormones, oxidative stress, and inflammation. Mediators Inflamm. https://doi.org/10.1155/2016/6757154 (2016).

    Google Scholar 

  71. Baghcheghi, Y. et al. Thymoquinone ameliorate hepatorenal toxicity associated with Propylthiouracil-Induced hypothyroidism in juvenile rats. Acta Endocrinol. (Buchar). 17 (4), 432–439. https://doi.org/10.4183/aeb.2021.432 (2021).

    Google Scholar 

  72. Lashein, F. E. M., Rehim, A. E., Abu Amra, S. A. & Shoaeb, E. Ameliorative effects of BPF separated from honey bee venoms on liver and kidney functions in hypothyroidic male rat’s model. Sohag J. Sci. 7 (3), 61–70. https://doi.org/10.21608/sjsci.2022.143417.1004 (2022).

    Google Scholar 

  73. Balkrishna, A. et al. Thyrogrit supplemented with a sub-optimal dose of levothyroxine, restores thyroid function in rat model of propylthiouracil-induced hypothyroidism. Clin. Phytosci. 10, 8. https://doi.org/10.1186/s40816-024-00371-0 (2024).

    Google Scholar 

  74. Teixeira, P. F. D. S., Dos Santos, P. B. & Pazos-Moura, C. C. The role of thyroid hormone in metabolism and metabolic syndrome. Ther. Adv. Endocrinol. Metab. 13 (11), 2042018820917869. https://doi.org/10.1177/2042018820917869 (2020).

    Google Scholar 

  75. Ahmad, I. et al. Fortification of yoghurt with bioactive functional foods and ingredients and associated challenges – A review. Trends Food Sci. Technol. 129, 558–580 (2022).

    Google Scholar 

  76. Rashwan, A. K., Osman, A. I. & Chen, W. Natural nutraceuticals for enhancing yoghurt properties: a review. Environ. Chem. Lett. 21, 1907–1931. https://doi.org/10.1007/s10311-023-01588-0 (2023).

    Google Scholar 

  77. Kar, A., Panda, S., Singh, M. & Biswas, S. Regulation of PTU-induced hypothyroidism in rats by caffeic acid primarily by activating Thyrotropin receptors and by inhibiting oxidative stress. Phytomedicine Plus. 2 (3), 100298. https://doi.org/10.1016/j.phyplu.2022.10029 (2022).

    Google Scholar 

Download references